

Ruffus documentation

Start Here:

Introduction

	Installation

	Latest Changes

	Manual

	New Object Orientated Syntax

	FAQ

	Hall of Fame

	Who is Ruffus?

	Release notes

Quick Reference:

Reference

	Ruffus Functions

	Ruffus Decorators

	Indicator Objects

Contributing

	Contributing

Indices

	Index

Installation

Ruffus is a lightweight python module for building computational pipelines.

Note

Ruffus requires Python 3.0 or higher, python 2 is no longer supported but older versions will still be python 2 compatible.

conda installation

The recomended method for installing CGAT-ruffus is to install using conda [https://conda.io/en/latest/] through
the bioconda [https://anaconda.org/bioconda/ruffus] channel. The reson for conda being the prefferred method
is that the dependancied are taken care of.

conda install -c bioconda ruffus

pip installation

Ruffus is also available on pypi [https://pypi.org/project/ruffus/].

pip install ruffus

Manual installation

To obtain the latest code, check it out from github [https://github.com/cgat-developers/ruffus] and activate it.

git clone https://github.com/cgat-developers/ruffus.git
cd ruffus
python setup.py install

Latest Changes

Major Features added to Ruffus

Note

See To do list for future enhancements to Ruffus

version 2.8.1

	compatibility with gevent >= 1.2

version 2.8.1

	Ctrl-C will kill drmaa jobs

	python3.7 compatibility, thanks to @jbarlow83, @QuLogic

version 2.6.3

21st April 2015

Bug fixes and minor enhancements

	@transform(…, suffix(“xxx”), output_dir = “/new/output/path”) works even when the ouput has more than one file (github) [https://github.com/bunbun/ruffus/issues/43]

	@subdivide(…, suffix(“xxx”), output_dir = “/new/output/path”) works in exactly the same way as @transform(…, outputdir=”xxx”) (github) [https://github.com/bunbun/ruffus/issues/42]

	ruffus.drmaa_wrapper.run_job() works with python3 (github) [https://github.com/bunbun/ruffus/issues/46]
Fixed issue with byte and text streams.

	ruffus.drmaa.wrapper.run_job() allows env (environment) to be set for jobs run locally as well as those on the cluster (github) [https://github.com/bunbun/ruffus/issues/44]

	New object-orientated style syntax works seamlessly with Ruffus command line support ruffus.cmdline.run (github) [https://github.com/bunbun/ruffus/issues/48].

version 2.6.2

12th March 2015

1) Bug fixes

	pipeline_printout_graph() incompatibility with python3 fixed

	checkpointing did not work correctly with @split(…) and @subdivide(…)

2) @transform `(…, suffix(“xxx”), output_dir = “/new/output/path”)

Thanks to the suggestion of Milan Simonovic.

@transform(…, suffix(…)) has easy to understand syntax and takes care of all the common use cases
of Ruffus.

However, when we need to place the output in a different directories, we suddenly have to plunge into the deep end and parse file paths using
regex() or formatter().

Now, @transform takes an optional output_dir named parameter so that we can continue to use suffix() even when the output needs
to go into a new directory.

#
input/a.fasta -> output/a.sam
input/b.fasta -> output/b.sam
#
starting_files = ["input/a.fasta","input/b.fasta"]
@transform(starting_files,
 suffix('.fasta'),
 '.sam',
 output_dir = "output")
def map_dna_sequence(input_file, output_file) :
 pass

See example test\test_suffix_output_dir.py

2) Named parameters

Decorators can take named parameters.

These are self documenting, and improve clarity.

Note that the usual Python rules for function parameters apply:

	Positional arguments must precede named arguments

	Named arguments cannot be used to fill in for “missing” positional arguments

For example the following two functions are identical:

Positional parameters:

@merge(prev_task, ["a.summary", "b.summary"], 14, "extra_info", {"a":45, "b":5})
def merge_task(inputs, outputs, extra_num, extra_str, extra_dict):
 pass

Named parameters:

new style is a bit clearer
@merge(input = prev_task,
 output = ["a.summary", "b.summary"],
 extras = [14, "extra_info", {"a":45, "b":5}]
)
def merge_task(inputs, outputs, extra_num, extra_str, extra_dict):
 pass

Warning

,extras= takes all the extras parameters (14, "extra_info", {"a":45, "b":5}) as a single list

	
	@split(…) and @merge(…)

	
	input

	output

	[extras]

	
	@transform(…) and @mkdir(…)

	
	input

	filter

	[replace_inputs or add_inputs]

	output

	[extras]

	[output_dir]

	
	@collate(…) and @subdivide(…)

	
	input

	filter

	output

	[extras]

	
	@originate(…)

	
	output

	[extras]

	
	@product(…), @permutations(…), @combinations(…), and @combinations_with_replacement(…)

	
	input

	filter

	[input2…NNN] (only for product)

	[filter2…NNN] (only for product) where NNN is an incrementing number

	tuple_size (except for product)

	[replace_inputs or add_inputs]

	output

	[extras]

3) New object orientated syntax for Ruffus

Ruffus Pipelines can now be created directly using the new Pipeline and Task objects instead of via decorators.

make ruffus pipeline
my_pipeline = Pipeline(name = "test")
my_pipeline.transform(task_func = map_dna_sequence,
 input = starting_files,
 filter = suffix('.fasta'),
 output = '.sam',
 output_dir = "output")

my_pipeline.run()

This new syntax is fully compatible and inter-operates with traditional Ruffus syntax using decorators.

Apart from cosmetic changes, the new syntax allows different instances of modular Ruffus sub-pipelines
to be defined separately, in different python modules and then joined together flexible at runtime.

The new syntax and discussion are introduced here.

version 2.5

6th August 2014

1) Python3 compatability (but at least python 2.6 is now required)

Ruffus v2.5 is now python3 compatible. This has required surprisingly many changes to the codebase. Please report any bugs to me.

Note

Ruffus now requires at least python 2.6

It proved to be impossible to support python 2.5 and python 3.x at the same time.

2) Ctrl-C interrupts

Ruffus now mostly(!) terminates gracefully when interrupted by Ctrl-C .

Please send me bug reports for when this doesn’t work with a minimally reproducible case.

This means that, in general, if an Exception is thrown during your pipeline but you don’t want to wait for the rest of the jobs to complete, you can still press Ctrl-C at any point.
Note that you may still need to clean up spawned processes, for example, using qdel if you are using Ruffus.drmaa_wrapper

3) Customising flowcharts in pipeline_printout_graph() with @graphviz

Contributed by Sean Davis, with improved syntax via Jake Biesinger

The graphics for each task can have its own attributes (URL, shape, colour) etc. by adding
graphviz attributes [http://www.graphviz.org/doc/info/attrs.html]
using the @graphviz decorator.

	This allows HTML formatting in the task names (using the label parameter as in the following example).
HTML labels must be enclosed in < and >. E.g.

label = "<Line
 wrapped task_name()>"

	You can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

	The URL attribute allows the generation of clickable svg, and also client / server
side image maps usable in web pages.
See Graphviz documentation [http://www.graphviz.org/content/output-formats#dimap]

Example:

@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
 color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
 label_suffix = "???", label_prefix = "What is this?
 ",
 label = "<What isthis>",
 shape= "component", height = 1.5, peripheries = 5,
 style="dashed")
def Up_to_date_task2(infile, outfile):
 pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):
 pass

[image: _images/history_html_flowchart1.png]

4. Consistent verbosity levels

The verbosity levels are now more fine-grained and consistent between pipeline_printout and pipeline_run.
Note that At verbosity > 2, pipeline_run outputs lists of up-to-date tasks before running the pipeline.
Many users who defaulted to using a verbosity of 3 may want to move up to verbose = 4.

	level 0 : Nothing

	level 1 : Out-of-date Task names

	level 2 : All Tasks (including any task function docstrings)

	level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

	level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

	level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

	level 6 : All jobs in All Tasks whether out of date or not

	level 10: Logs messages useful only for debugging ruffus pipeline code

	Defaults to level 4 for pipeline_printout: Out of date jobs, with explanations and warnings

	Defaults to level 1 for pipeline_run: Out-of-date Task names

5. Allow abbreviated paths from pipeline_run or pipeline_printout

Note

Please contact me with suggestions if you find the abbreviations useful but “aesthetically challenged”!

Some pipelines produce interminable lists of long filenames. It would be nice to be able to abbreviate this
to just enough information to follow the progress.

	Ruffus now allows either

	
	Only the nth top level sub-directories to be included

	The message to be truncated to a specified number of characters (to fit on a line, for example)

Note that the number of characters specified is the separate length of the input and output parameters,
not the entire message. You many need to specify a smaller limit that you expect (e.g. 60 rather than 80)

pipeline_printout(verbose_abbreviated_path = NNN)
pipeline_run(verbose_abbreviated_path = -MMM)

The verbose_abbreviated_path parameter restricts the length of input / output file paths to either

	NNN levels of nested paths

	A total of MMM characters, MMM is specified by setting verbose_abbreviated_path to -MMM (i.e. negative values)

verbose_abbreviated_path defaults to 2

For example:

Given ["aa/bb/cc/dddd.txt", "aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt"]

 # Original relative paths
 "[aa/bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

 # Full abspath
 verbose_abbreviated_path = 0
 "[/test/ruffus/src/aa/bb/cc/dddd.txt, /test/ruffus/src/aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

 # Specifed level of nested directories
 verbose_abbreviated_path = 1
 "[.../dddd.txt, .../gggg.txt]"

 verbose_abbreviated_path = 2
 "[.../cc/dddd.txt, .../ffff/gggg.txt]"

 verbose_abbreviated_path = 3
 "[.../bb/cc/dddd.txt, .../eeee/ffff/gggg.txt]"

 # Truncated to MMM characters
 verbose_abbreviated_path = -60
 "<???> /bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

If you are using ruffus.cmdline, the abbreviated path lengths can be specified on
the command line as an extension to the verbosity:

 # verbosity of 4
 yourscript.py --verbose 4

 # display three levels of nested directories
 yourscript.py --verbose 4:3

 # restrict input and output parameters to 60 letters
 yourscript.py --verbose 4:-60

The number after the colon is the abbreviated path length

Other changes

	BUG FIX: Output producing wild cards was not saved in the checksum files!!!

	BUG FIX: @mkdir bug under Windows. Thanks to Sean Turley. (Aargh! Different exceptions are thrown in Windows vs. Linux for the same condition!)

	Added pipeline_get_task_names(…) which returns all task name as a list of strings. Thanks to Clare Sloggett

version 2.4.1

26th April 2014

	Breaking changes to drmaa API suggested by Bernie Pope to ensure portability across different drmaa implementations (SGE, SLURM etc.)

version 2.4

4th April 2014

Additions to ruffus namespace

	formatter() (syntax)

	originate() (syntax)

	subdivide() (syntax)

Installation: use pip

sudo pip install ruffus --upgrade

1) Command Line support

The optional Ruffus.cmdline module provides support for a set of common command
line arguments which make writing Ruffus pipelines much more pleasant.
See manual

2) Check pointing

	Contributed by Jake Biesinger

	See Manual

	Uses a fault resistant sqlite database file to log i/o files, and additional checksums

	defaults to checking file timestamps stored in the current directory (ruffus_utilility.RUFFUS_HISTORY_FILE = '.ruffus_history.sqlite')

	pipeline_run(…, checksum_level = N, …)

	level 0 = CHECKSUM_FILE_TIMESTAMPS : Classic mode. Use only file timestamps (no checksum file will be created)

	level 1 = CHECKSUM_HISTORY_TIMESTAMPS : Also store timestamps in a database after successful job completion

	level 2 = CHECKSUM_FUNCTIONS : As above, plus a checksum of the pipeline function body

	level 3 = CHECKSUM_FUNCTIONS_AND_PARAMS : As above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

	defaults to level 1

	Can speed up trivial tasks: Previously Ruffus always added an extra 1 second pause between tasks
to guard against file systems (Ext3, FAT, some NFS) with low timestamp granularity.

3) subdivide() (syntax)

	Take a list of input jobs (like @transform) but further splits each into multiple jobs, i.e. it is a many->even more relationship

	synonym for the deprecated @split(..., regex(), ...)

4) mkdir() (syntax) with formatter(), suffix() and regex()

	allows directories to be created depending on runtime parameters or the output of previous tasks

	behaves just like @transform but with its own (internal) function which does the actual work of making a directory

	Previous behavior is retained:mkdir continues to work seamlessly inside @follows

5) originate() (syntax)

	Generates output files without dependencies from scratch (ex nihilo!)

	For first step in a pipeline

	Task function obviously only takes output and not input parameters. (There are no inputs!)

	synonym for @split(None,…)

	See Summary / Manual

6) New flexible formatter() (syntax) alternative to regex() & suffix()

	Easy manipulation of path subcomponents in the style of os.path.split() [http://docs.python.org/2/library/os.path.html#os.path.split]

	Regular expressions are no longer necessary for path manipulation

	Familiar python syntax

	Optional regular expression matches

	Can refer to any in the list of N input files (not only the first file as for regex(...))

	Can even refer to individual letters within a match

7) Combinatorics (all vs. all decorators)

	@product (See itertools.product [http://docs.python.org/2/library/itertools.html#itertools.product])

	@permutations (See itertools.permutations [http://docs.python.org/2/library/itertools.html#itertools.permutations])

	@combinations (See itertools.combinations [http://docs.python.org/2/library/itertools.html#itertools.combinations])

	@combinations_with_replacement (See itertools.combinations_with_replacement [http://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement])

	in optional combinatorics module

	Only formatter() provides the necessary flexibility to construct the output. (suffix() and regex() are not supported.)

	See Summary / Manual

8) drmaa support and multithreading:

	ruffus.drmaa_wrapper.run_job() (syntax)

	Optional helper module allows jobs to dispatch work to a computational cluster and wait until it completes.

	Requires multithread rather than multiprocess

9) pipeline_run(...) and exceptions

See Manual

	Optionally terminate pipeline after first exception

	Display exceptions without delay

10) Miscellaneous

	Better error messages for formatter(), suffix() and regex() for pipeline_printout(..., verbose >= 3, ...)

	
	Error messages for showing mismatching regular expression and offending file name

	Wrong capture group names or out of range indices will raise informative Exception

version 2.3

1st September, 2013

	
	@active_if turns off tasks at runtime

	The Design and initial implementation were contributed by Jacob Biesinger

Takes one or more parameters which can be either booleans or functions or callable objects which return True / False:

run_if_true_1 = True
run_if_true_2 = False

@active_if(run_if_true, lambda: run_if_true_2)
def this_task_might_be_inactive():
 pass

The expressions inside @active_if are evaluated each time
pipeline_run, pipeline_printout or pipeline_printout_graph is called.

Dormant tasks behave as if they are up to date and have no output.

	
	Command line parsing

	
	Supports both argparse (python 2.7) and optparse (python 2.6):

	Ruffus.cmdline module is optional.

	See manual

	
	Optionally terminate pipeline after first exception

	To have all exceptions interrupt immediately:

pipeline_run(..., exceptions_terminate_immediately = True)

By default ruffus accumulates NN errors before interrupting the pipeline prematurely. NN is the specified parallelism for pipeline_run(..., multiprocess = NN).

Otherwise, a pipeline will only be interrupted immediately if exceptions of type ruffus.JobSignalledBreak are thrown.

	Display exceptions without delay

By default, Ruffus re-throws exceptions in ensemble after pipeline termination.

To see exceptions as they occur:

pipeline_run(..., log_exceptions = True)

logger.error(...) will be invoked with the string representation of the each exception, and associated stack trace.

The default logger prints to sys.stderr, but this can be changed to any class from the logging module or compatible object via pipeline_run(..., logger = ???)

	Improved pipeline_printout()

	@split operations now show the 1->many output in pipeline_printout

This make it clearer that @split is creating multiple output parameters (rather than a single output parameter consisting of a list):

Task = split_animals
 Job = [None
 -> cows
 -> horses
 -> pigs
 , any_extra_parameters]

	File date and time are displayed in human readable form and out of date files are flagged with asterisks.

version 2.2

22nd July, 2010

	Simplifying @transform syntax with suffix(…)

Regular expressions within ruffus are very powerful, and can allow files to be moved
from one directory to another and renamed at will.

However, using consistent file extensions and
@transform(..., suffix(...)) makes the code much simpler and easier to read.

Previously, suffix(...) did not cooperate well with inputs(...).
For example, finding the corresponding header file (“.h”) for the matching input
required a complicated regex(...) regular expression and input(...). This simple case,
e.g. matching “something.c” with “something.h”, is now much easier in Ruffus.

	For example:

	source_files = ["something.c", "more_code.c"]
@transform(source_files, suffix(".c"), add_inputs(r"\1.h", "common.h"), ".o")
def compile(input_files, output_file):
 (source_file,
 header_file,
 common_header) = input_files
 # call compiler to make object file

This is equivalent to calling:

compile(["something.c", "something.h", "common.h"], "something.o")
compile(["more_code.c", "more_code.h", "common.h"], "more_code.o")

The \1 matches everything but the suffix and will be applied to both globs and file names.

For simplicity and compatibility with previous versions, there is always an implied r”1” before
the output parameters. I.e. output parameters strings are always substituted.

	Tasks and glob in inputs(…) and add_inputs(…)

globs and tasks can be added as the prerequisites / input files using
inputs(...) and add_inputs(...). glob expansions will take place when the task
is run.

	Advanced form of @split with regex:

The standard @split divided one set of inputs into multiple outputs (the number of which
can be determined at runtime).

This is a one->many operation.

An advanced form of @split has been added which can split each of several files further.

In other words, this is a many->"many more" operation.

	For example, given three starting files:

	original_files = ["original_0.file",
 "original_1.file",
 "original_2.file"]

	We can split each into its own set of sub-sections:

	@split(original_files,
 regex(r"starting_(\d+).fa"), # match starting files
 r"files.split.\1.*.fa" # glob pattern
 r"\1") # index of original file
def split_files(input_file, output_files, original_index):
 """
 Code to split each input_file
 "original_0.file" -> "files.split.0.*.fa"
 "original_1.file" -> "files.split.1.*.fa"
 "original_2.file" -> "files.split.2.*.fa"
 """

This is, conceptually, the reverse of the @collate(…) decorator

	Ruffus will complain about unescaped regular expression special characters:

Ruffus uses “\1” and “\2” in regular expression substitutions. Even seasoned python
users may not remember that these have to be ‘escaped’ in strings. The best option is
to use ‘raw’ python strings e.g.

r"\1_substitutes\2correctly\3four\4times"

Ruffus will throw an exception if it sees an unescaped “\1” or “\2” in a file name,
which should catch most of these bugs.

	Prettier output from pipeline_printout_graph

Changed to nicer colours, symbols etc. for a more professional look.
@split and @merge tasks now look different from @transform.
Colours, size and resolution are now fully customisable:

pipeline_printout_graph(#...
 user_colour_scheme = {
 "colour_scheme_index":1,
 "Task to run" : {"fillcolor":"blue"},
 pipeline_name : "My flowchart",
 size : (11,8),
 dpi : 120)})

An SVG bug in firefox has been worked around so that font size are displayed correctly.

version 2.1.1

	
	@transform(.., add_inputs(…))

	add_inputs(...) allows the addition of extra input dependencies / parameters for each job.

	Unlike inputs(...), the original input parameter is retained:

	from ruffus import *
@transform(["a.input", "b.input"], suffix(".input"), add_inputs("just.1.more","just.2.more"), ".output")
def task(i, o):
""

	Produces:

	Job = [[a.input, just.1.more, just.2.more] ->a.output]
Job = [[b.input, just.1.more, just.2.more] ->b.output]

Like inputs, add_inputs accepts strings, tasks and glob s
This minor syntactic change promises add much clarity to Ruffus code.
add_inputs() is available for @transform, @collate and @split

version 2.1.0

	@jobs_limit
Some tasks are resource intensive and too many jobs should not be run at the
same time. Examples include disk intensive operations such as unzipping, or
downloading from FTP sites.

Adding:

@jobs_limit(4)
@transform(new_data_list, suffix(".big_data.gz"), ".big_data")
def unzip(i, o):
 "unzip code goes here"

would limit the unzip operation to 4 jobs at a time, even if the rest of the
pipeline runs highly in parallel.

(Thanks to Rob Young for suggesting this.)

version 2.0.10

	touch_files_only option for pipeline_run

When the pipeline runs, task functions will not be run. Instead, the output files for
each job (in each task) will be touch-ed if necessary.
This can be useful for simulating a pipeline run so that all files look as
if they are up-to-date.

Caveats:

	This may not work correctly where output files are only determined at runtime, e.g. with @split

	Only the output from pipelined jobs which are currently out-of-date will be touch-ed.
In other words, the pipeline runs as normal, the only difference is that the
output files are touch-ed instead of being created by the python task functions
which would otherwise have been called.

	Parameter substitution for inputs(…)

The inputs(…) parameter in @transform, @collate can now take tasks and glob s,
and these will be expanded appropriately (after regular expression replacement).

For example:

@transform("dir/a.input", regex(r"(.*)\/(.+).input"),
 inputs((r"\1/\2.other", r"\1/*.more")), r"elsewhere/\2.output")
def task1(i, o):
 """
 Some pipeline task
 """

Is equivalent to calling:

task1(("dir/a.other", "dir/1.more", "dir/2.more"), "elsewhere/a.output")

Here:

r"\1/*.more"

is first converted to:

r"dir/*.more"

which matches:

"dir/1.more"
"dir/2.more"

version 2.0.9

	Better display of logging output

	Advanced form of @split
This is an experimental feature.

Hitherto, @split only takes 1 set of input (tasks/files/glob s) and split these
into an indeterminate number of output.

This is a one->many operation.

Sometimes it is desirable to take multiple input files, and split each of them further.

This is a many->many (more) operation.

It is possible to hack something together using @transform but downstream tasks would not
aware that each job in @transform produces multiple outputs (rather than one input,
one output per job).

The syntax looks like:

@split(get_files, regex(r"(.+).original"), r"\1.*.split")
def split_files(i, o):
 pass

If get_files() returned A.original, B.original and C.original,
split_files() might lead to the following operations:

A.original
 -> A.1.original
 -> A.2.original
 -> A.3.original
B.original
 -> B.1.original
 -> B.2.original
C.original
 -> C.1.original
 -> C.2.original
 -> C.3.original
 -> C.4.original
 -> C.5.original

Note that each input (A/B/C.original) can produce a number of output, the exact
number of which does not have to be pre-determined.
This is similar to @split

Tasks following split_files will have ten inputs corresponding to each of the
output from split_files.

If @transform was used instead of @split, then tasks following split_files
would only have 3 inputs.

version 2.0.8

	File names can be in unicode

	File systems with 1 second timestamp granularity no longer cause problems.

version 2.0.2

	Much prettier /useful output from pipeline_printout

	New tutorial / manual

version 2.0

	Revamped documentation:

	Rewritten tutorial

	Comprehensive manual

	New syntax help

	Major redesign. New decorators include

	@split

	@transform

	@merge

	@collate

	Major redesign. Decorator inputs can mix

	Output from previous tasks

	glob [http://docs.python.org/library/glob.html] patterns e.g. *.txt

	Files names

	Any other data type

version 1.1.4

Tasks can get their input by automatically chaining to the output from one or more parent tasks using @files_re

version 1.0.7

Added proxy_logger module for accessing a shared log across multiple jobs in different processes.

version 1.0

Initial Release in Oxford

Manual

Ruffus Manual Table of Contents

Download as pdf.

	Chapter 1: An introduction to basic Ruffus syntax

	Chapter 2: Transforming data in a pipeline with @transform

	Chapter 3: More on @transform-ing data

	Chapter 4: Creating files with @originate

	Chapter 5: Understanding how your pipeline works with pipeline_printout()

	Chapter 6: Running Ruffus from the command line with ruffus.cmdline

	Chapter 7: Displaying the pipeline visually with pipeline_printout_graph()

	Chapter 8: Specifying output file names with formatter() and regex()

	Chapter 9: Preparing directories for output with @mkdir

	Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions

	Chapter 11: Pipeline topologies and a compendium of Ruffus decorators

	Chapter 12: Splitting up large tasks / files with @split

	Chapter 13: @merge multiple input into a single result

	Chapter 15: Logging progress through a pipeline

	Chapter 14: Multiprocessing, drmaa and Computation Clusters

	Chapter 16: @subdivide tasks to run efficiently and regroup with @collate

	Chapter 17: @combinations, @permutations and all versus all @product

	Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if

	Chapter 20: Manipulating task inputs via string substitution with inputs() and add_inputs()

	Chapter 19: Signal the completion of each stage of our pipeline with @posttask

	Chapter 21: Esoteric: Generating parameters on the fly with @files

	Chapter 22: Esoteric: Running jobs in parallel without files using @parallel

	Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with @check_if_uptodate

	Appendix 1 Flow Chart Colours with pipeline_printout_graph

	Appendix 2 Under the hood: How dependency works

	Appendix 3 Exceptions thrown inside pipelines

	Appendix 4 Names (keywords) exported from Ruffus

	Appendix 5: Legacy and deprecated syntax @files

	Appendix 6: Legacy and deprecated syntax @files_re

Ruffus Manual: List of Example Code for Each Chapter:

	Chapter 1: Python Code for An introduction to basic Ruffus syntax

	Chapter 1: Python Code for Transforming data in a pipeline with @transform

	Chapter 3: Python Code for More on @transform-ing data

	Chapter 4: Python Code for Creating files with @originate

	Chapter 5: Python Code for Understanding how your pipeline works with pipeline_printout(…)

	Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(…)

	Chapter 8: Python Code for Specifying output file names with formatter() and regex()

	Chapter 9: Python Code for Preparing directories for output with @mkdir()

	Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions

	Chapter 12: Python Code for Splitting up large tasks / files with @split

	Chapter 13: Python Code for @merge multiple input into a single result

	Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters

	Chapter 15: Python Code for Logging progress through a pipeline

	Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate

	Chapter 17: Python Code for @combinations, @permutations and all versus all @product

	Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()

	Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files

Chapter 1: An introduction to basic Ruffus syntax

See also

	Manual Table of Contents

Overview

[image: ../../_images/theoretical_pipeline_schematic.png]
Computational pipelines transform your data in stages until the final result is produced.
One easy way to understand pipelines is by imagining your data flowing across a series of
pipes until it reaches its final destination. Even quite complicated processes can be
broken into simple stages. Of course, it helps to visualise the whole process.

Ruffus is a way of automating the plumbing in your pipeline: You supply the python functions
which perform the data transformation, and tell Ruffus how these pipeline task functions
are connected up. Ruffus will make sure that the right data flows down your pipeline in the
right way at the right time.

Note

Ruffus refers to each stage of your pipeline as a task.

Importing Ruffus

The most convenient way to use Ruffus is to import the various names directly:

from ruffus import *

This will allow Ruffus terms to be used directly in your code. This is also
the style we have adopted for this manual.

	If any of these clash with names in your code, you can use qualified names instead:

	import ruffus

ruffus.pipeline_printout("...")

Ruffus uses only standard python syntax.

There is no need to install anything extra or to have your script “preprocessed” to run
your pipeline.

Ruffus decorators [https://docs.python.org/2/glossary.html#term-decorator]

To let Ruffus know that which python functions are part of your pipeline,
they need to be tagged or annotated using
Ruffus decorators [https://docs.python.org/2/glossary.html#term-decorator] .

Decorators [https://docs.python.org/2/glossary.html#term-decorator] have been part of the Python language since version 2.4.
Common examples from the standard library include @staticmethod [https://docs.python.org/2/library/functions.html#staticmethod] and
classmethod [https://docs.python.org/2/library/functions.html#classmethod].

decorators [https://docs.python.org/2/glossary.html#term-decorator] start with a @
prefix, and take a number of parameters in parenthesis, much like in a function call.

decorators [https://docs.python.org/2/glossary.html#term-decorator] are placed before a normal python function.

[image: ../../_images/tutorial_step1_decorator_syntax.png]

Multiple decorators can be stacked as necessary in whichever order:

@follows(first_task)
@follows(another_task)
@originate(range(5))
def second_task():
 ""

Ruffus decorators [https://docs.python.org/2/glossary.html#term-decorator] do not
otherwise alter the underlying function. These can still be called normally.

Your first Ruffus pipeline

1. Write down the file names

Ruffus is designed for data moving through a computational pipeline as a series of files.

It is also possible to use Ruffus pipelines without using intermediate data files but for your
first efforts, it is probably best not to subvert its canonical design.

The first thing when designing a new Ruffus pipeline is to sketch out the set of file names for
the pipeline on paper:

[image: ../../_images/tutorial_ruffus_files.jpg]

	Here we have a number of DNA sequence files (*.fasta)

	
	mapped to a genome (*.sam), and

	compressed (*.bam) before being

	summarised statistically (*.statistics)

The first striking thing is that all of the files following the same consistent naming scheme.

Note

The most important part of a Ruffus pipeline is to have a consistent naming scheme for your files.

This allows you to build sane pipelines.

In this case, each of the files at the same stage share the same file extension, e.g. (.sam).
This is usually the simplest and most sensible choice. (We shall see in later chapters
that Ruffus supports more complicated naming patterns so long as they are consistent.)

2. Write the python functions for each stage

Next, we can sketch out the python functions which do the actual work for the pipeline.

Note

	These are normal python functions with the important proviso that

	The first parameter contains the Input (file names)

	The second parameter contains the Output (file names)

You can otherwise supply as many parameters as is required.

	Each python function should only take a Single Input at a time

All the parallelism in your pipeline should be handled by Ruffus. Make sure
each function analyses one thing at a time.

Ruffus refers to a pipelined function as a task.

The code for our three task functions look something like:

#
STAGE 1 fasta->sam
#
def map_dna_sequence(input_file, # 1st parameter is Input
 output_file): # 2nd parameter is Output
 """
 Sketch of real mapping function
 We can do the mapping ourselves
 or call some other programme:
 os.system("stampy %s %s..." % (input_file, output_file))
 """
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
def compress_sam_file(input_file, # Input parameter
 output_file): # Output parameter
 """
 Sketch of real compression function
 """
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
def summarise_bam_file(input_file, # Input parameter
 output_file, # Output parameter
 extra_stats_parameter): # 1 or more extra parameters as required
 """
 Sketch of real analysis function
 """
 ii = open(input_file)
 oo = open(output_file, "w")

If we were calling our functions manually, without the benefit of Ruffus, we would need
the following sequence of calls:

STAGE 1
map_dna_sequence("a.fasta", "a.sam")
map_dna_sequence("b.fasta", "b.sam")
map_dna_sequence("c.fasta", "c.sam")

STAGE 2
compress_sam_file("a.sam", "a.bam")
compress_sam_file("b.sam", "b.bam")
compress_sam_file("c.sam", "c.bam")

STAGE 3
summarise_bam_file("a.bam", "a.statistics")
summarise_bam_file("b.bam", "b.statistics")
summarise_bam_file("c.bam", "c.statistics")

3. Link the python functions into a pipeline

Ruffus makes exactly the same function calls on your behalf. However, first, we need to
tell Ruffus what the arguments should be for each of the function calls.

	The Input is easy: This is either the starting file set (*.fasta) or whatever is produced
by the previous stage.

	The Output file name is the same as the Input but with the appropriate extension.

These are specified using the Ruffus @transform decorator as follows:

from ruffus import *

starting_files = ["a.fasta", "b.fasta", "c.fasta"]

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files
 suffix(".fasta"), # suffix = .fasta
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_file,
 output_file):
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage
 suffix(".sam"), # suffix = .sam
 ".bam") # Output suffix = .bam
def compress_sam_file(input_file,
 output_file):
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage
 suffix(".bam"), # suffix = .bam
 ".statistics", # Output suffix = .statistics
 "use_linear_model") # Extra statistics parameter
def summarise_bam_file(input_file,
 output_file,
 extra_stats_parameter):
 """
 Sketch of real analysis function
 """
 ii = open(input_file)
 oo = open(output_file, "w")

4. @transform syntax

	
The 1st parameter for @transform is the Input.

This is either the set of starting data or the name of the previous pipeline function.

Ruffus chains together the stages of a pipeline by linking the Output of the previous stage into the Input of the next.

	
The 2nd parameter is the current suffix

(i.e. our Input file extensions of ".fasta" or ".sam" or ".bam")

	
The 3rd parameter is what we want our Output file name to be after suffix string substitution (e.g. .fasta - > .sam).

This works because we are using a sane naming scheme for our data files.

	Other parameters can be passed to @transform and they will be forwarded to our python
pipeline function.

The functions that do the actual work of each stage of the pipeline remain unchanged.
The role of Ruffus is to make sure each is called in the right order,
with the right parameters, running in parallel (using multiprocessing if desired).

5. Run the pipeline!

Note

Key Ruffus Terminology:

A task is an annotated python function which represents a recipe or stage of your pipeline.

A job is each time your recipe is applied to a piece of data, i.e. each time Ruffus calls your function.

Each task or pipeline recipe can thus have many jobs each of which can work in parallel on different data.

Now we can run the pipeline with the Ruffus function pipeline_run:

pipeline_run()

This produces three sets of results in parallel, as you might expect:

>>> pipeline_run()
 Job = [a.fasta -> a.sam] completed
 Job = [b.fasta -> b.sam] completed
 Job = [c.fasta -> c.sam] completed
Completed Task = map_dna_sequence
 Job = [a.sam -> a.bam] completed
 Job = [b.sam -> b.bam] completed
 Job = [c.sam -> c.bam] completed
Completed Task = compress_sam_file
 Job = [a.bam -> a.statistics, use_linear_model] completed
 Job = [b.bam -> b.statistics, use_linear_model] completed
 Job = [c.bam -> c.statistics, use_linear_model] completed
Completed Task = summarise_bam_file

To work out which functions to call, pipeline_run
finds the last task function of your pipeline, then
works out all the other functions this depends on, working backwards up the chain of
dependencies automatically.

We can specify this end point of your pipeline explicitly:

>>> pipeline_run(target_tasks = [summarise_bam_file])

This allows us to only run part of the pipeline, for example:

>>> pipeline_run(target_tasks = [compress_sam_file])

Note

The example code can be copied and pasted into a python
command shell.

Chapter 2: Transforming data in a pipeline with @transform

See also

	Manual Table of Contents

	@transform syntax

Note

Remember to look at the example code:

	Chapter 1: Python Code for Transforming data in a pipeline with @transform

Review

[image: ../../_images/theoretical_pipeline_schematic.png]
Computational pipelines transform your data in stages until the final result is produced.
Ruffus automates the plumbing in your pipeline. You supply the python functions which perform the data transformation,
and tell Ruffus how these pipeline stages or task functions are connected together.

Note

The best way to design a pipeline is to:

	write down the file names of the data as it flows across your pipeline

	write down the names of functions which transforms the data at each stage of the pipeline.

Task functions as recipes

Each task function of the pipeline is a recipe or
rule [http://www.gnu.org/software/make/manual/make.html#Rule-Introduction]
which can be applied repeatedly to our data.

For example, one can have

	a compile() task which will compile any number of source code files, or

	a count_lines() task which will count the number of lines in any file or

	an align_dna() task which will align the DNA of many chromosomes.

@transform is a 1 to 1 operation

@transform is a 1:1 operation because for each input, it generates one output.

[image: ../../_images/transform_1_to_1_example.png]
This is obvious when you count the number of jobs at each step. In our example pipeline, there are always
three jobs moving through in step at each stage (task).

Each Input or Output is not limited, however, to a single filename. Each job can accept, for example,
a pair of files as its Input, or generate more than one file or a dictionary or numbers as its Output.

When each job outputs a pair of files, this does not generate two jobs downstream. It just means that the successive
task in the pipeline will receive a list or tuple of files as its input parameter.

Note

The different sort of decorators in Ruffus determine the topology of your pipeline,
i.e. how the jobs from different tasks are linked together seamlessly.

@transform always generates one Output for one Input.

In the later parts of the tutorial, we will encounter more decorators which can split up, or join together or group inputs.

In other words, using other decorators Input and Output can have many to one, many to many etc. relationships.

A pair of files as the Input

Let us rewrite our previous example so that the Input of the first task
are matching pairs [http://en.wikipedia.org/wiki/DNA_sequencing_theory#Pairwise_end-sequencing]
of DNA sequence files, processed in tandem.

from ruffus import *

starting_files = [("a.1.fastq", "a.2.fastq"),
 ("a.1.fastq", "a.2.fastq"),
 ("a.1.fastq", "a.2.fastq")]

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files
 suffix(".1.fastq"), # suffix = .1.fastq
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_files,
 output_file):
 # remember there are two input files now
 ii1 = open(input_files[0])
 ii2 = open(input_files[1])
 oo = open(output_file, "w")

The only changes are to the first task:

pipeline_run()
 Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
 Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
 Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
Completed Task = map_dna_sequence

suffix always matches only the first file name in each Input.

Input and Output parameters

Ruffus chains together different tasks by taking the Output from one job
and plugging it automatically as the Input of the next.

The first two parameters of each job are the Input and Output parameters respectively.

In the above example, we have:

>>> pipeline_run()
 Job = [a.bam -> a.statistics, use_linear_model] completed
 Job = [b.bam -> b.statistics, use_linear_model] completed
 Job = [c.bam -> c.statistics, use_linear_model] completed
Completed Task = summarise_bam_file

Parameters for summarise_bam_file()

	Inputs

	Outputs

	Extra

	"a.bam"

	"a.statistics"

	"use_linear_model"

	"b.bam"

	"b.statistics"

	"use_linear_model"

	"c.bam"

	"c.statistics"

	"use_linear_model"

Extra parameters are for the consumption of summarise_bam_file() and will not passed to the next task.

Ruffus was designed for pipelines which save intermediate data in files. This is not
compulsory but saving your data in files at each step provides many advantages:

	Ruffus can use file system time stamps to check if your pipeline is up to date

	Your data is persistent across runs

	This is a good way to pass large amounts of data across processes and computational nodes

Nevertheless, all the task parameters can include anything which suits your workflow, from lists of files, to numbers,
sets or tuples. Ruffus imposes few constraints on what you
would like to send to each stage of your pipeline.

Ruffus does, however, assume that if the Input and Output parameter contains strings, these will be interpreted as file names
required by and produced by that job. As we shall see, the modification times of these file names
indicate whether that part of the pipeline is up to date or needs to be rerun.

Chapter 3: More on @transform-ing data

See also

	Manual Table of Contents

	@transform syntax

Note

Remember to look at the example code:

	Chapter 3: Python Code for More on @transform-ing data

Review

[image: ../../_images/theoretical_pipeline_schematic.png]
Computational pipelines transform your data in stages until the final result is produced.
Ruffus automates the plumbing in your pipeline. You supply the python functions which perform the data transformation,
and tell Ruffus how these pipeline stages or task functions are connected together.

Note

The best way to design a pipeline is to:

	write down the file names of the data as it flows across your pipeline

	write down the names of functions which transforms the data at each stage of the pipeline.

Chapter 1: An introduction to basic Ruffus syntax described the bare bones of a simple Ruffus pipeline.

Using the Ruffus @transform decorator, we were able to
specify the data files moving through our pipeline so that our specified task functions
could be invoked.

This may seem like a lot of effort and complication for something so simple: a couple of
simple python function calls we could have invoked ourselves.
However, By letting Ruffus manage your pipeline parameters, you will get the following features
for free:

	Only out-of-date parts of the pipeline will be re-run

	Multiple jobs can be run in parallel (on different processors if possible)

	Pipeline stages can be chained together automatically. This means you can apply your
pipeline just as easily to 1000 files as to 3.

Running pipelines in parallel

Even though three sets of files have been specified for our initial pipeline, and they can be
processed completely independently, by default Ruffus runs each of them serially in succession.

To ask Ruffus to run them in parallel, all you have to do is to add a multiprocess parameter to pipeline_run:

>>> pipeline_run(multiprocess = 5)

In this case, we are telling Ruffus to run a maximum of 5 jobs at the same time. Since we only have
three sets of data, that is as much parallelism as we are going to get…

Up-to-date jobs are not re-run unnecessarily

A job will be run only if the output file timestamps are out of date.
If you ran our example code a second time, nothing would happen because all the work is already complete.

We can check the details by asking Ruffus for more verbose output

>>> pipeline_run(verbose = 4)
 Task = map_dna_sequence
 All jobs up to date
 Task = compress_sam_file
 All jobs up to date
 Task = summarise_bam_file
 All jobs up to date

	Nothing happens because:

	
	a.sam was created later than a.1.fastq and a.2.fastq, and

	a.bam was created later than a.sam and

	a.statistics was created later than a.bam.

and so on…

	Let us see what happens if we recreated the file a.1.fastq so that it appears as if 1 out of the original data files is out of date

	open("a.1.fastq", "w")
pipeline_run(multiprocess = 5)

The up to date jobs are cleverly ignored and only the out of date files are reprocessed.

 >>> open("a.1.fastq", "w")
 >>> pipeline_run(verbose=2)
 Job = [[b.1.fastq, b.2.fastq] -> b.sam] # unnecessary: already up to date
 Job = [[c.1.fastq, c.2.fastq] -> c.sam] # unnecessary: already up to date
 Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
 Completed Task = map_dna_sequence
 Job = [b.sam -> b.bam] # unnecessary: already up to date
 Job = [c.sam -> c.bam] # unnecessary: already up to date
 Job = [a.sam -> a.bam] completed
 Completed Task = compress_sam_file
 Job = [b.bam -> b.statistics, use_linear_model] # unnecessary: already up to date
 Job = [c.bam -> c.statistics, use_linear_model] # unnecessary: already up to date
 Job = [a.bam -> a.statistics, use_linear_model] completed
 Completed Task = summarise_bam_file

Defining pipeline tasks out of order

The examples so far assumes that all your pipelined tasks are defined in order.
(first_task before second_task). This is usually the most sensible way to arrange your code.

If you wish to refer to tasks which are not yet defined, you can do so by quoting the function name as a string and wrapping
it with the indicator class output_from(…) so that Ruffus
knowns this is a task name, not a file name

 #---
 #
 # second task
 #
 # task name string wrapped in output_from(...)
 @transform(output_from("first_task"), suffix(".output.1"), ".output2")
 def second_task(input_files, output_file):
 with open(output_file, "w"): pass

 #---
 #
 # first task
 #
 @transform(first_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
 def first_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass

 #---
 #
 # Run
 #
 pipeline_run([second_task])

You can also refer to tasks (functions) in other modules, in which case the full
qualified name must be used:

@transform(output_from("other_module.first_task"), suffix(".output.1"), ".output2")
def second_task(input_files, output_file):
 pass

Multiple dependencies

Each task can depend on more than one antecedent simply by chaining to a list in @transform

 #
 # third_task depends on both first_task() and second_task()
 #
 @transform([first_task, second_task], suffix(".output.1"), ".output2")
 def third_task(input_files, output_file):
 with open(output_file, "w"): pass

third_task() depends on and follows both first_task() and second_task(). However, these latter two tasks are independent of each other
and can and will run in parallel. This can be clearly shown for our example if we added a little randomness to the run time of each job:

time.sleep(random.random())

The execution of first_task() and second_task() jobs will be interleaved and they finish in no particular order:

>>> pipeline_run([third_task], multiprocess = 6)
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = second_task
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed

Note

See the example code

@follows

If there is some extrinsic reason one non-dependent task has to precede the other, then this can be specified explicitly using @follows:

 #
 # @follows specifies a preceding task
 #
 @follows("first_task")
 @transform(second_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
 def second_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):

@follows specifies either a preceding task (e.g. first_task), or if
it has not yet been defined, the name (as a string) of a task function (e.g. "first_task").

With the addition of @follows, all the jobs
of second_task() start after those from first_task() have finished:

>>> pipeline_run([third_task], multiprocess = 6)
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = first_task
 Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = second_task

Making directories automatically with @follows and mkdir

@follows is also useful for making sure one or more destination directories
exist before a task is run.

Ruffus provides special syntax to support this, using the special
mkdir indicator class. For example:

#
@follows specifies both a preceding task and a directory name
#
@follows("first_task", mkdir("output/results/here"))
@transform(second_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):

Before second_task() is run, the output/results/here directory will be created if necessary.

Globs in the Input parameter

	As a syntactic convenience, Ruffus also allows you to specify a glob [http://docs.python.org/library/glob.html] pattern (e.g. *.txt) in the
Input parameter.

	glob [http://docs.python.org/library/glob.html] patterns will be automatically specify all matching file names as the Input.

	Any strings within Input which contain the letters: *?[] will be treated as a glob [http://docs.python.org/library/glob.html] pattern.

The first function in our initial Ruffus pipeline example could have been written as:

#
STAGE 1 fasta->sam
#
@transform("*.fasta", # Input = glob
 suffix(".fasta"), # suffix = .fasta
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_file,
 output_file):
 ""

Mixing Tasks and Globs in the Input parameter

glob [http://docs.python.org/library/glob.html] patterns, references to tasks and file names strings
can be mixed freely in (nested) python lists and tuples in the Input parameter.

For example, a task function can chain to the Output from multiple upstream tasks:

@transform([task1, task2, # Input = multiple tasks
 "aa*.fasta", + all files matching glob
 "zz.fasta"] + file name
 suffix(".fasta"), # suffix = .fasta
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_file,
 output_file):
 ""

In all cases, Ruffus tries to do the right thing, and to make the simple or
obvious case require the simplest, least onerous syntax.

If sometimes Ruffus does not behave the way you expect, please write to the authors:
it may be a bug!

Chapter 5: Understanding how your pipeline works with pipeline_printout(…) and
Chapter 6: Running Ruffus from the command line with ruffus.cmdline will show you how to
to make sure that your intentions are reflected in Ruffus code.

Chapter 4: Creating files with @originate

See also

	Manual Table of Contents

	@originate syntax in detail

Note

Remember to look at the example code:

	Chapter 4: Python Code for Creating files with @originate

Simplifying our example with @originate

Our previous pipeline example started off with a set of files which we had to create first.

This is a common task: pipelines have to start somewhere.

Ideally, though, we would only want to create these starting files if they didn’t already exist. In other words, we want a sort of @transform which makes files from nothing (None?).

This is exactly what @originate helps you to do.

Rewriting our pipeline with @originate gives the following three steps:

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):
 with open(output_file, "w"): pass

#
Run
#
pipeline_run([second_task])

 Job = [None -> [job1.a.start, job1.b.start]] completed
 Job = [None -> [job2.a.start, job2.b.start]] completed
 Job = [None -> [job3.a.start, job3.b.start]] completed
Completed Task = create_initial_file_pairs
 Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed
 Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
 Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed
Completed Task = first_task
 Job = [job1.a.output.1 -> job1.a.output.2] completed
 Job = [job2.a.output.1 -> job2.a.output.2] completed
 Job = [job3.a.output.1 -> job3.a.output.2] completed
Completed Task = second_task

Chapter 5: Understanding how your pipeline works with pipeline_printout(…)

See also

	Manual Table of Contents

	pipeline_printout(…) syntax

	Python Code for this chapter

Note

	Whether you are learning or developing ruffus pipelines, your best friend is pipeline_printout(…)
This shows the exact parameters and files as they are passed through the pipeline.

	We also strongly recommend you use the Ruffus.cmdline convenience module which
will take care of all the command line arguments for you. See Chapter 6: Running Ruffus from the command line with ruffus.cmdline.

Printing out which jobs will be run

pipeline_printout(…) takes the same parameters as pipeline_run but just prints
the tasks which are and are not up-to-date.

The verbose parameter controls how much detail is displayed.

Let us take the pipelined code we previously wrote in
Chapter 3 More on @transform-ing data and @originate
but call pipeline_printout(…) instead of
pipeline_run(…).
This lists the tasks which will be run in the pipeline:

>>> import sys
>>> pipeline_printout(sys.stdout, [second_task])

__
Tasks which will be run:

Task = create_initial_file_pairs
Task = first_task
Task = second_task
__

To see the input and output parameters of each job in the pipeline, try increasing the verbosity from the default (1) to 3
(See code)

This is very useful for checking that the input and output parameters have been specified correctly.

Determining which jobs are out-of-date or not

It is often useful to see which tasks are or are not up-to-date. For example, if we
were to run the pipeline in full, and then modify one of the intermediate files, the
pipeline would be partially out of date.

Let us start by run the pipeline in full but then modify job1.a.output.1 so that the second task appears out-of-date:

pipeline_run([second_task])

"touch" job1.stage1
open("job1.a.output.1", "w").close()

Run pipeline_printout(…) with a verbosity of 5.

This will tell you exactly why second_task(...) needs to be re-run:
because job1.a.output.1 has a file modification time after job1.a.output.2 (highlighted):

>>> pipeline_printout(sys.stdout, [second_task], verbose = 5)

__
Tasks which are up-to-date:

Task = create_initial_file_pairs
Task = first_task

__

__
Tasks which will be run:

Task = second_task
 Job = [job1.a.output.1
 -> job1.a.output.2]
>>> # File modification times shown for out of date files
 Job needs update:
 Input files:
 * 22 Jul 2014 15:29:19.33: job1.a.output.1
 Output files:
 * 22 Jul 2014 15:29:07.53: job1.a.output.2

 Job = [job2.a.output.1
 -> job2.a.output.2]
 Job = [job3.a.output.1
 -> job3.a.output.2]

__

N.B. At a verbosity of 5, even jobs which are up-to-date in second_task are displayed.

Verbosity levels

The verbosity levels for pipeline_printout(…) and pipeline_run(…)
can be specified from verbose = 0 (print out nothing) to the extreme verbosity of verbose=6. A verbosity of above 10 is reserved for the internal
debugging of Ruffus

	level 0 : nothing

	level 1 : Out-of-date Task names

	level 2 : All Tasks (including any task function docstrings)

	level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

	level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

	level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

	level 6 : All jobs in All Tasks whether out of date or not

	level 10: logs messages useful only for debugging ruffus pipeline code

Abbreviating long file paths with verbose_abbreviated_path

Pipelines often produce interminable lists of deeply nested filenames. It would be nice to be able to abbreviate this
to just enough information to follow the progress.

The verbose_abbreviated_path parameter specifies that pipeline_printout(…) and pipeline_run(…) only display

	the NNN th top level sub-directories to be included, or that

	the message to be truncated to a specified `MMM characters (to fit onto a line, for example). MMM is specified by setting verbose_abbreviated_path = -MMM, i.e. negative values.

Note that the number of characters specified is just the separate lengths of the input and output parameters,
not the entire indented line. You many need to specify a smaller limit that you expect (e.g. 60 rather than 80)

pipeline_printout(verbose_abbreviated_path = NNN)
pipeline_run(verbose_abbreviated_path = -MMM)

verbose_abbreviated_path defaults to 2

For example:

Given ["aa/bb/cc/dddd.txt", "aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt"]

 # Original relative paths
 "[aa/bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

 # Full abspath
 verbose_abbreviated_path = 0
 "[/test/ruffus/src/aa/bb/cc/dddd.txt, /test/ruffus/src/aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

 # Specifed level of nested directories
 verbose_abbreviated_path = 1
 "[.../dddd.txt, .../gggg.txt]"

 verbose_abbreviated_path = 2
 "[.../cc/dddd.txt, .../ffff/gggg.txt]"

 verbose_abbreviated_path = 3
 "[.../bb/cc/dddd.txt, .../eeee/ffff/gggg.txt]"

 # Truncated to MMM characters
 verbose_abbreviated_path = -60
 "<???> /bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

Getting a list of all tasks in a pipeline

If you just wanted a list of all tasks (Ruffus decorated function names), then you can
just run Run pipeline_get_task_names(…).

This doesn’t touch any pipeline code or even check to see if the pipeline is connected up properly.

However, it is sometimes useful to allow users at the command line to choose from a list of
possible tasks as a target.

Chapter 6: Running Ruffus from the command line with ruffus.cmdline

See also

	Manual table of Contents

We find that much of our Ruffus pipeline code is built on the same template and this is generally
a good place to start developing a new pipeline.

From version 2.4, Ruffus includes an optional Ruffus.cmdline module that provides
support for a set of common command line arguments. This makes writing Ruffus pipelines much more pleasant.

Template for argparse [http://docs.python.org/2.7/library/argparse.html]

All you need to do is copy these 6 lines

import ruffus.cmdline as cmdline

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?')

<<<---- add your own command line options like --input_file here
parser.add_argument("--input_file")

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

<<<---- pipelined functions go here

cmdline.run (options)

You are recommended to use the standard argparse [http://docs.python.org/2.7/library/argparse.html] module
but the deprecated optparse [http://docs.python.org/2.7/library/optparse.html] module works as well. (See below for the template)

Command Line Arguments

Ruffus.cmdline by default provides these predefined options:

-v, --verbose
 --version
-L, --log_file

 # tasks
-T, --target_tasks
 --forced_tasks
-j, --jobs
 --use_threads

 # printout
-n, --just_print

 # flow chart
 --flowchart
 --key_legend_in_graph
 --draw_graph_horizontally
 --flowchart_format

 # check sum
 --touch_files_only
 --checksum_file_name
 --recreate_database

1) Logging

The script provides for logging both to the command line:

myscript -v
myscript --verbose

and an optional log file:

keep tabs on yourself
myscript --log_file /var/log/secret.logbook

Logging is ignored if neither --verbose or --log_file are specified on the command line

Ruffus.cmdline automatically allows you to write to a shared log file via a proxy from multiple processes.
However, you do need to use logging_mutex for the log files to be synchronised properly across different jobs:

with logging_mutex:

 logger_proxy.info("Look Ma. No hands")

Logging is set up so that you can write

A) Only to the log file:

logger.info("A message")

B) Only to the display:

logger.debug("A message")

C) To both simultaneously:

from ruffus.cmdline import MESSAGE

logger.log(MESSAGE, "A message")

2) Tracing pipeline progress

This is extremely useful for understanding what is happening with your pipeline, what tasks and which
jobs are up-to-date etc.

See Chapter 5: Understanding how your pipeline works with pipeline_printout(…)

To trace the pipeline, call script with the following options

well-mannered, reserved
myscript --just_print
myscript -n

or

extremely loquacious
myscript --just_print --verbose 5
myscript -n -v5

Increasing levels of verbosity (--verbose to --verbose 5) provide more detailed output

3) Printing a flowchart

This is the subject of Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(…).

Flowcharts can be specified using the following option:

myscript --flowchart xxxchart.svg

The extension of the flowchart file indicates what format the flowchart should take,
for example, svg, jpg etc.

Override with --flowchart_format

4) Running in parallel on multiple processors

Optionally specify the number of parallel strands of execution and which is the last target task to run.
The pipeline will run starting from any out-of-date tasks which precede the target and proceed no further
beyond the target.

myscript --jobs 15 --target_tasks "final_task"
myscript -j 15

5) Setup checkpointing so that Ruffus knows which files are out of date

The checkpoint file uses to the value set in the
environment (DEFAULT_RUFFUS_HISTORY_FILE).

If this is not set, it will default to .ruffus_history.sqlite in the current working directory.

Either can be changed on the command line:

myscript --checksum_file_name mychecksum.sqlite

Recreating checkpoints

Create or update the checkpoint file so that all existing files in completed jobs appear up to date

Will stop sensibly if current state is incomplete or inconsistent

myscript --recreate_database

Touch files

As far as possible, create empty files with the correct timestamp to make the pipeline appear up to date.

myscript --touch_files_only

6) Skipping specified options

Note that particular options can be skipped (not added to the command line), if they conflict with your own options, for example:

see below for how to use get_argparse
parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?',
 # Exclude the following options:
 # --log_file --key_legend_in_graph
 ignored_args = ["log_file", "key_legend_in_graph"])

7) Specifying verbosity and abbreviating long paths

The verbosity can be specified on the command line

myscript --verbose 5

verbosity of 5 + 1 = 6
myscript --verbose 5 --verbose

verbosity reset to 2
myscript --verbose 5 --verbose --verbose 2

If the printed paths are too long, and need to be abbreviated, or alternatively, if you want see the full absolute paths of your input and output parameters,
you can specify an extension to the verbosity. See the manual discussion of verbose_abbreviated_path for
more details. This is specified as --verbose VERBOSITY:VERBOSE_ABBREVIATED_PATH. (No spaces!)

For example:

 # verbosity of 4
 myscript.py --verbose 4

 # display three levels of nested directories
 myscript.py --verbose 4:3

 # restrict input and output parameters to 60 letters
 myscript.py --verbose 4:-60

8) Displaying the version

Note that the version for your script will default to "%(prog)s 1.0" unless specified:

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?',
 version = "my_programme.py v. 2.23")

Template for optparse [http://docs.python.org/2.7/library/optparse.html]

deprecated since python 2.7

#
Using optparse (new in python v 2.6)
#
from ruffus import *

parser = cmdline.get_optgparse(version="%prog 1.0", usage = "\n\n %prog [options]")

<<<---- add your own command line options like --input_file here
parser.add_option("-i", "--input_file", dest="input_file", help="Input file")

(options, remaining_args) = parser.parse_args()

logger which can be passed to ruffus tasks
logger, logger_mutex = cmdline.setup_logging ("this_program",
 options.log_file,
 options.verbose)

<<<---- pipelined functions go here

cmdline.run (options)

Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(…)

See also

	Manual Table of Contents

	pipeline_printout_graph(…) syntax

	@graphviz(…) syntax

Note

Remember to look at the example code:

	Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(…)

Printing out a flowchart of our pipeline

It is all very well being able to trace the data flow through the pipeline as text.
Sometimes, however, we need a bit of eye-candy!

We can see a flowchart for our fledgling pipeline by executing:

pipeline_printout_graph ('flowchart.svg',
 'svg',
 [second_task],
 no_key_legend = False)

[image: ../../_images/simple_tutorial_stage5_flowchart.png]

Flowcharts can be printed in a large number of formats including jpg, svg, png and pdf.

Note

Flowcharts rely on the dot programme from Graphviz [http://www.graphviz.org/].

Please make sure this is installed.

There are 8 standard colour schemes, but you can further customise all the colours to your satisfaction:

[image: ../../_images/flowchart_colour_schemes.png]

See here for example code.

Command line options made easier with ruffus.cmdline

If you are using ruffus.cmdline, then you can easily ask for a flowchart from the command line:

your_script.py --flowchart pipeline_flow_chart.png

The output format is deduced from the extension but can be specified manually:

specify format. Otherwise, deduced from the extension
your_script.py --flowchart pipeline_flow_chart.png --flowchart_format png

Print the flow chart horizontally or vertically…

flowchart proceeds from left to right , rather than from top to bottom
your_script.py --flowchart pipeline_flow_chart.png --draw_graph_horizontally

…with or without a key legend

Draw key legend
your_script.py --flowchart pipeline_flow_chart.png --key_legend_in_graph

Horribly complicated pipelines!

Flowcharts are especially useful if you have really complicated pipelines, such as

[image: ../../_images/simple_tutorial_complex_flowchart.png]

Circular dependency errors in pipelines!

Especially, if the pipeline is not set up properly, and vicious circular dependencies
are present:

[image: ../../_images/simple_tutorial_complex_flowchart_error.png]

@graphviz: Customising the appearance of each task

The graphic for each task can be further customised as you please by adding
graphviz attributes [http://www.graphviz.org/doc/info/attrs.html] such as the URL, shape, colour
directly to that node using the decorator `@graphviz.

For example, we can customise the graphic for myTask() to look like:

[image: ../../_images/history_html_flowchart2.png]

by adding the requisite attributes as follows:

@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
 color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
 label_suffix = "???", label_prefix = "What is this?
 ",
 label = "<What isthis>",
 shape= "component", height = 1.5, peripheries = 5,
 style="dashed")
def Up_to_date_task2(infile, outfile):
 pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):
 pass

You can even using HTML formatting in task names, including specifying line wraps (as in the above example),
using the label parameter. However, HTML labels must be enclosed in < and >.

label = "<Line
 wrapped task_name()>"

Otherwise, you can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

	The URL attribute allows the generation of clickable svg, and also client / server

	side image maps usable in web pages.
See Graphviz documentation [http://www.graphviz.org/content/output-formats#dimap]

Chapter 8: Specifying output file names with formatter() and regex()

See also

	Manual Table of Contents

	suffix() syntax

	formatter() syntax

	regex() syntax

Note

Remember to look at the example code:

	Chapter 8: Python Code for Specifying output file names with formatter() and regex()

Review

[image: ../../_images/theoretical_pipeline_schematic.png]
Computational pipelines transform your data in stages until the final result is produced.
The most straightforward way to use Ruffus is to hold the intermediate results after each stage
in a series of files with related file names.

Part of telling Ruffus how these pipeline stages or task functions are connected
together is to write simple rules for how to the file names for each stage follow on from each other.
Ruffus helps you to specify these file naming rules.

Note

The best way to design a pipeline is to:

	Write down the file names of the data as it flows across your pipeline.
Do these file names follow a pattern ?

	Write down the names of functions which transforms the data at each stage of the pipeline.

A different file name suffix() for each pipeline stage

The easiest and cleanest way to write Ruffus pipelines is to use a different suffix
for each stage of your pipeline.

We used this approach in Chapter 1: An introduction to basic Ruffus syntax and in code from Chapter 3: More on @transform-ing data:

 #Task Name: File suffices
 _________________________ ______________________
 create_initial_file_pairs *.start
 first_task *.output.1
 second_task *.output.2

There is a long standing convention of using file suffices to denote file type: For example, a “compile” task might convert source files of type *.c to object files of type *.o.

	We can think of Ruffus tasks comprising :

	
	recipes in @transform(...) for transforming file names: changing .c to a .o (e.g. AA.c -> AA.o BB.c -> BB.o)

	recipes in a task function def foo_bar() for transforming your data: from source .c to object .o

Let us review the Ruffus syntax for doing this:

@transform(create_initial_file_pairs, # Input: Name of previous task(s)
 suffix(".start"), # Matching suffix
 ".output.1") # Replacement string
def first_task(input_files, output_file):
 with open(output_file, "w"): pass

	Input:

	The first parameter for @transform can be a mixture of one or more:

	
	previous tasks (e.g. create_initial_file_pairs)

	file names (all python strings are treated as paths)

	glob specifications (e.g *.c, /my/path/*.foo)

Each element provides an input for the task. So if the previous task create_initial_file_pairs has five outputs, the next @transform task will accept
these as five separate inputs leading to five independent jobs.

	suffix():

The second parameter suffix(".start") must match the end of the first string in each input.
For example, create_initial_file_pairs produces the list ['job1.a.start', 'job1.b.start'], then suffix(".start") must matches the first string, i.e. 'job1.a.start'.
If the input is nested structure, this would be iterated through recursively to find the first string.

Note

Inputs which do not match the suffix are discarded altogether.

	Replacement:

The third parameter is the replacement for the suffix.
The pair of input strings in the step3 example produces the following output parameter

input_parameters = ['job1.a.start', 'job1.b.start']
matching_input = 'job1.a.start'
output_parameter = 'job1.a.output.1'

When the pipeline is run, this results in the following equivalent call to first_task(...):

first_task(['job1.a.start', 'job1.b.start'], 'job1.a.output.1'):

The replacement parameter can itself be a list or any arbitrary complicated structure:

@transform(create_initial_file_pairs, # Input
 suffix(".a.start"), # Matching suffix
 [".output.a.1", ".output.b.1", 45]) # Replacement list
def first_task(input_files, output_parameters):
 print "input_parameters = ", input_files
 print "output_parameters = ", output_parameters

In which case, all the strings are used as replacements, other values are left untouched, and we obtain the following:

job #1
input = ['job1.a.start', 'job1.b.start']
output = ['job1.output.a.1', 'job1.output.b.1', 45]

job #2
input = ['job2.a.start', 'job2.b.start']
output = ['job2.output.a.1', 'job2.output.b.1', 45]

job #3
input = ['job3.a.start', 'job3.b.start']
output = ['job3.output.a.1', 'job3.output.b.1', 45]

Note how task function is called with the value 45 verbatim because it is not a string.

formatter() manipulates pathnames and regular expression

suffix() replacement is the cleanest and easiest way to generate suitable output file names for each stage in a pipeline.
Often, however, we require more complicated manipulations to specify our file names.
For example,

	It is common to have to change directories from a data directory to a working directory as the first step of a pipeline.

	Data management can be simplified by separate files from each pipeline stage into their own directory.

	Information may have to be decoded from data file names, e.g. "experiment373.IBM.03March2002.txt"

Though formatter() is much more powerful, the principle and syntax are the same:
we take string elements from the Input and perform some replacements to generate the Output parameters.

formatter()

	Allows easy manipulation of path subcomponents in the style of os.path.split() [http://docs.python.org/2/library/os.path.html#os.path.split], and os.path.basename [http://docs.python.org/2/library/os.path.html#os.path.basename]

	Uses familiar python string.format [http://docs.python.org/2/library/string.html#string-formatting] syntax (See string.format examples [http://docs.python.org/2/library/string.html#format-examples].)

	Supports optional regular expression (re [http://docs.python.org/2/library/re.html#re.MatchObject.group]) matches including named captures.

	Can refer to any file path (i.e. python string) in each input and is not limited like suffix() to the first string.

	Can even refer to individual letters within a match

Path name components

formatter() breaks down each input pathname into path name components which can then be recombined in whichever way by the replacement string.

Given an example string of :

input_string = "/directory/to/a/file.name.ext"
formatter()

the path components are:

	basename: The base name [http://docs.python.org/2/library/os.path.html#os.path.basename] excluding extension [http://docs.python.org/2/library/os.path.html#os.path.splitext], "file.name"

	ext : The extension [http://docs.python.org/2/library/os.path.html#os.path.splitext], ".ext"

	path : The dirname [http://docs.python.org/2/library/os.path.html#os.path.dirname], "/directory/to/a"

	subdir : A list of sub-directories in the path in reverse order, ["a", "to", "directory", "/"]

	subpath : A list of descending sub-paths in reverse order, ["/directory/to/a", "/directory/to", "/directory", "/"]

The replacement string refers to these components by using python string.format [http://docs.python.org/2/library/string.html#string-formatting] style curly braces. "{NAME}"

We refer to an element from the Nth input string by index, for example:

	"{ext[0]}" is the extension of the first file name string in Input.

	"{basename[1]}" is the basename of the second file name in Input.

	"{basename[1][0:3]}" are the first three letters from the basename of the second file name in Input.

subdir, subpath were designed to help you navigate directory hierachies with the minimum of fuss.
For example, you might want to graft a hierachical path to another location:
"{subpath[0][2]}/from/{subdir[0][0]}/{basename[0]}" neatly replaces just one directory ("to") in the path with another ("from"):

replacement_string = "{subpath[0][2]}/from/{subdir[0][0]}/{basename[0]}"

input_string = "/directory/to/a/file.name.ext"
result_string = "/directory/from/a/file.name.ext"

Filter and parse using regular expressions

Regular expression [http://docs.python.org/2/library/re.html#re.MatchObject.group] matches can be used with the similar syntax.
Our example string can be parsed using the following regular expression:

input_string = "/directory/to/a/file.name.ext"
formatter(r"/directory/(.+)/(?P<MYFILENAME>.+)\.ext")

We capture part of the path using (.+), and the base name using (?P<MYFILENAME>.+).
These matching subgroups [http://docs.python.org/2/library/re.html#re.MatchObject.group] can be referred to by index
but for greater clarity the second named capture can also be referred to by name, i.e. {MYFILENAME}.

The regular expression components for the first string can thus be referred to as follows:

	{0[0]} : The entire match captured by index, "/directory/to/a/file.name.ext"

	{1[0]} : The first match captured by index, "to/a"

	{2[0]} : The second match captured by index, "file.name"

	{MYFILENAME[0]} : The match captured by name, "file.name"

If each input consists of a list of paths such as ['job1.a.start', 'job1.b.start', 'job1.c.start'], we can match each of them separately
by using as many regular expressions as necessary. For example:

input_string = ['job1.a.start', 'job1.b.start', 'job1.c.start']
Regular expression matches for 1st, 2nd but not 3rd element
formatter(".+a.start", "b.start$")

Or if you only wanted regular expression matches for the second file name (string), pad with None:

input_string = ['job1.a.start', 'job1.b.start', 'job1.c.start']
Regular expression matches for 2nd but not 1st or 3rd elements
formatter(None, "b.start$")

Using @transform() with formatter()

We can put these together in the following example:

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.c.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
formatter
#

first task
@transform(create_initial_file_pairs, # Input

 formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
 ".+/job[123].b.start"), # Match only "b" files

 ["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
 "{path[1]}/jobs{JOBNUMBER[0]}.output.b.1", 45])
def first_task(input_files, output_parameters):
 print "input_parameters = ", input_files
 print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

This produces:

input_parameters = ['job1.a.start',
 'job1.b.start']
output_parameters = ['/home/lg/src/temp/jobs1.output.a.1',
 '/home/lg/src/temp/jobs1.output.b.1', 45]

input_parameters = ['job2.a.start',
 'job2.b.start']
output_parameters = ['/home/lg/src/temp/jobs2.output.a.1',
 '/home/lg/src/temp/jobs2.output.b.1', 45]

Notice that job3 has 'job3.c.start' as the second file.
This fails to match the regular expression and is discarded.

Note

Failed regular expression mismatches are ignored.

formatter() regular expressions are thus very useful in filtering out all
files which do not match your specified criteria.

If your some of your task inputs have a mixture of different file types, a simple Formatter(".txt$"), for example, will make
your code a lot simpler…

string substitution for “extra” arguments

The first two arguments for Ruffus task functions are special because they are the Input and Output
parameters which link different stages of a pipeline.

Python strings in these arguments are names of data files whose modification times indicate whether the pipeline is up to date or not.

Other arguments to task functions are not passed down the pipeline but consumed.
Any python strings they contain do not need to be file names. These extra arguments are very useful
for passing data to pipelined tasks, such as shared values, loggers, programme options etc.

One helpful feature is that strings in these extra arguments are also subject to formatter() string substitution.
This means you can leverage the parsing capabilities of Ruffus to decode any information about the pipeline data files,
These might include the directories you are running in and parts of the file name.

For example, if we would want to know which files go with which “job number” in the previous example:

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.c.start']])
def create_initial_file_pairs(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
print job number as an extra argument
#

first task
@transform(create_initial_file_pairs, # Input

 formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
 ".+/job[123].b.start"), # Match only "b" files

 ["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
 "{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"],

 "{JOBNUMBER[0]}"
def first_task(input_files, output_parameters, job_number):
 print job_number, ":", input_files

pipeline_run(verbose=0)

>>> pipeline_run(verbose=0)
1 : ['job1.a.start', 'job1.b.start']
2 : ['job2.a.start', 'job2.b.start']

Changing directories using formatter() in a zoo…

Here is a more fun example. We would like to feed the denizens of a zoo. Unfortunately, the file names for
these are spread over several directories. Ideally, we would like their food supply to be grouped more
sensibly. And, of course, we only want to feed the animals, not the plants.

I have colour coded the input and output files for this task to show how we would like to rearrange them:

[image: ../../_images/simple_tutorial_zoo_animals_formatter_example.jpg]
from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
 # List of animals and plants
 ["tiger/mammals.wild.animals",
 "lion/mammals.wild.animals",
 "lion/mammals.handreared.animals",
 "dog/mammals.tame.animals",
 "dog/mammals.wild.animals",
 "crocodile/reptiles.wild.animals",
 "rose/flowering.handreared.plants"])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

We can see that the food for each animal are now grouped by clade in the same directory, which makes a lot more sense…

Note how we used subpath[0][1] to move down one level of the file path to build a new file name.

>>> pipeline_run(verbose=0)
Food for the wild crocodile = ./reptiles/wild.crocodile.food will be placed in ./reptiles
Food for the tame dog = ./mammals/tame.dog.food will be placed in ./mammals
Food for the wild dog = ./mammals/wild.dog.food will be placed in ./mammals
Food for the handreared lion = ./mammals/handreared.lion.food will be placed in ./mammals
Food for the wild lion = ./mammals/wild.lion.food will be placed in ./mammals
Food for the wild tiger = ./mammals/wild.tiger.food will be placed in ./mammals

regex() manipulates via regular expressions

If you are a hard core regular expressions fan, you may want to use regex() instead of suffix() or formatter().

Note

regex() uses regular expressions like formatter() but

	It only matches the first file name in the input. As described above, formatter() can match any one or more of the input filename strings.

	It does not understand file paths so you may have to perform your own directory / file name parsing.

	String replacement uses syntax borrowed from re.sub() [http://docs.python.org/2/library/re.html#re.sub], rather than building a result from parsed regular expression (and file path) components

In general formatter() is more powerful and was introduced from version 2.4 is intended to be a more user friendly replacement for regex().

Let us see how the previous zoo example looks with regex():

formatter() code:

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

regex() code:

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 r"\1/\g<clade>/\g<tame>.\2.food", # Replacement

 r"\1/\g<clade>", # new_directory
 r"\2", # animal_name
 "\g<tame>") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

The regular expression to parse the input file path safely was a bit hairy to write, and it is not
clear that it handles all edge conditions (e.g. files in the root directory). Apart from that, if the
limitations of regex() do not preclude its use, then the two approaches
are not so different in practice.

Chapter 9: Preparing directories for output with @mkdir()

See also

	Manual Table of Contents

	@follows(mkdir()) syntax in detail

	@mkdir syntax in detail

Note

Remember to look at the example code:

	Chapter 9: Python Code for Preparing directories for output with @mkdir()

Overview

In Chapter 3, we saw that we could use @follows(mkdir()) to
ensure that output directories exist:

#
create_new_files() @follows mkdir
#
@follows(mkdir("output/results/here"))
@originate(["output/results/here/a.start_file",
 "output/results/here/b.start_file"])
def create_new_files(output_file_pair):
 pass

This ensures that the decorated task follows (@follows) the
making of the specified directory (mkdir()).

Sometimes, however, the Output is intended not for any single directory but a group
of destinations depending on the parsed contents of Input paths.

Creating directories after string substitution in a zoo…

You may remember this example from Chapter 8:

We want to feed the denizens of a zoo. The original file names are spread over several directories and we
group their food supply by the clade of the animal in the following manner:

[image: ../../_images/simple_tutorial_zoo_animals_formatter_example.jpg]
Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "%40s -> %90s" % (input_file, output_file)
 # this blows up
 # open(output_file, "w")

The example code from Chapter 8 is, however, incomplete. If we were to actually create the specified
files we would realise that we had forgotten to create the destination directories reptiles, mammals first!

using formatter()

We could of course create directories manually.
However, apart from being tedious and error prone, we have already gone to some lengths
to parse out the diretories for @transform.
Why don’t we use the same logic to make the directories?

Can you see the parallels between the syntax for @mkdir and @transform?

create directories for each clade
@mkdir(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
 "{subpath[0][1]}/{clade[0]}) # new_directory

Put animals of each clade in the same directory
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "%40s -> %90s" % (input_file, output_file)
 # this works now
 open(output_file, "w")

See the example code

using regex()

If you are particularly fond of using regular expression to parse file paths,
you could also use regex():

create directories for each clade
@mkdir(create_initial_files, # Input

 regex(r"(.*?)/?(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
 r"\1/\g<clade>") # new_directory

Put animals of each clade in the same directory
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "%40s -> %90s" % (input_file, output_file)
 # this works now
 open(output_file, "w")

Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions

See also

	Manual Table of Contents

Note

Remember to look at the example code:

	Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions

Overview

[image: ../../_images/theoretical_pipeline_schematic.png]
Computational pipelines transform your data in stages until the final result is produced.

By default, Ruffus uses file modification times for the input and output to determine
whether each stage of a pipeline is up-to-date or not. But what happens when the task
function is interrupted, whether from the command line or by error, half way through writing the output?

In this case, the half-formed, truncated and corrupt Output file will look newer than its Input and hence up-to-date.

Interrupting tasks

Let us try with an example:

from ruffus import *
import sys, time

create initial files
@originate(['job1.start'])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

#---
#
long task to interrupt
#
@transform(create_initial_files, suffix(".start"), ".output")
def long_task(input_files, output_file):
 with open(output_file, "w") as ff:
 ff.write("Unfinished...")
 # sleep for 2 seconds here so you can interrupt me
 sys.stderr.write("Job started. Press ^C to interrupt me now...\n")
 time.sleep(2)
 ff.write("\nFinished")
 sys.stderr.write("Job completed.\n")

Run
pipeline_run([long_task])

When this script runs, it pauses in the middle with this message:

Job started. Press ^C to interrupt me now...

If you interrupted the script by pressing Control-C at this point, you will see that job1.output contains only Unfinished....
However, if you should rerun the interrupted pipeline again, Ruffus ignores the corrupt, incomplete file:

>>> pipeline_run([long_task])
Job started. Press ^C to interrupt me now...
Job completed

And if you had run pipeline_printout:

>>> pipeline_printout(sys.stdout, [long_task], verbose=3)
__
Tasks which will be run:

Task = long_task
 Job = [job1.start
 -> job1.output]
 # Job needs update: Previous incomplete run leftover: [job1.output]

We can see that Ruffus magically knows that the previous run was incomplete, and that job1.output is detritus that needs to be discarded.

Checkpointing: only log completed jobs

All is revealed if you were to look in the working directory. Ruffus has created a file called .ruffus_history.sqlite.
In this SQLite [https://sqlite.org/] database, Ruffus logs only those files which are the result of a completed job,
all other files are suspect.
This file checkpoint database is a fail-safe, not a substitute for checking file modification times. If the Input or Output files are
modified, the pipeline will rerun.

By default, Ruffus saves only file timestamps to the SQLite database but you can also add a checksum of the pipeline task function body or parameters.
This behaviour can be controlled by setting the checksum_level parameter
in pipeline_run(). For example, if you do not want to save any timestamps or checksums:

pipeline_run(checksum_level = 0)

CHECKSUM_FILE_TIMESTAMPS = 0 # only rerun when the file timestamps are out of date (classic mode)
CHECKSUM_HISTORY_TIMESTAMPS = 1 # Default: also rerun when the history shows a job as being out of date
CHECKSUM_FUNCTIONS = 2 # also rerun when function body has changed
CHECKSUM_FUNCTIONS_AND_PARAMS = 3 # also rerun when function parameters or function body change

Note

Checksums are calculated from the pickled [http://docs.python.org/2/library/pickle.html] string for the function code and parameters.
If pickling fails, Ruffus will degrade gracefully to saving just the timestamp in the SQLite database.

Do not share the same checkpoint file across for multiple pipelines!

The name of the Ruffus python script is not saved in the checkpoint file along side timestamps and checksums.
That means that you can rename your pipeline source code file without having to rerun the pipeline!
The tradeoff is that if multiple pipelines are run from the same directory, and save their histories to the
same SQlite database file, and if their file names overlap (all of these are bad ideas anyway!), this is
bound to be a source of confusion.

Luckily, the name and path of the checkpoint file can be also changed for each pipeline

Setting checkpoint file names

Warning

Some file systems do not appear to support SQLite at all:

There are reports that SQLite databases have file locking problems [http://beets.radbox.org/blog/sqlite-nightmare.html] on Lustre.

The best solution would be to keep the SQLite database on an alternate compatible file system away from the working directory if possible.

environment variable DEFAULT_RUFFUS_HISTORY_FILE

The name of the checkpoint file is the value of the environment variable DEFAULT_RUFFUS_HISTORY_FILE.

export DEFAULT_RUFFUS_HISTORY_FILE=/some/where/.ruffus_history.sqlite

This gives considerable flexibility, and allows a system-wide policy to be set so that all Ruffus checkpoint files are set logically to particular paths.

Note

It is your responsibility to make sure that the requisite destination directories for the checkpoint files exist beforehand!

Where this is missing, the checkpoint file defaults to .ruffus_history.sqlite in your working directory

Setting the checkpoint file name manually

This checkpoint file name can always be overridden as a parameter to Ruffus functions:

pipeline_run(history_file = "XXX")
pipeline_printout(history_file = "XXX")
pipeline_printout_graph(history_file = "XXX")

There is also built in support in Ruffus.cmdline. So if you use this module, you can simply add to your command line:

use a custom checkpoint file
myscript --checksum_file_name .myscript.ruffus_history.sqlite

This takes precedence over everything else.

Useful checkpoint file name policies DEFAULT_RUFFUS_HISTORY_FILE

If the pipeline script is called test/bin/scripts/run.me.py, then these are the resulting checkpoint files locations:

Example 1: same directory, different name

If the environment variable is:

export DEFAULT_RUFFUS_HISTORY_FILE=.{basename}.ruffus_history.sqlite

Then the job checkpoint database for run.me.py will be .run.me.ruffus_history.sqlite

/test/bin/scripts/run.me.py
/common/path/for/job_history/scripts/.run.me.ruffus_history.sqlite

Example 2: Different directory, same name

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/.run.me.ruffus_history.sqlite

Example 2: Different directory, same name but keep one level of subdirectory to disambiguate

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/{subdir[0]}/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/scripts/.run.me.ruffus_history.sqlite

Example 2: nested in common directory

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/{path}/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/test/bin/scripts/.run.me.ruffus_history.sqlite

Regenerating the checkpoint file

Occasionally you may need to re-generate the checkpoint file.

This could be necessary:

	because you are upgrading from a previous version of Ruffus without checkpoint file support

	on the rare occasions when the SQLite file becomes corrupted and has to deleted

	if you wish to circumvent the file checking of Ruffus after making some manual changes!

To do this, it is only necessary to call pipeline_run appropriately:

CHECKSUM_REGENERATE = 2
pipeline(touch_files_only = CHECKSUM_REGENERATE)

Similarly, if you are using Ruffus.cmdline, you can call:

myscript --recreate_database

Note that this regenerates the checkpoint file to reflect the existing Input, Output files on disk.
In other words, the onus is on you to make sure there are no half-formed, corrupt files. On the other hand,
the pipeline does not need to have been previously run successfully for this to work. Essentially, Ruffus,
pretends to run the pipeline, while logging all the files with consistent file modication times, stopping
at the first tasks which appear out of date or incomplete.

Rules for determining if files are up to date

The following simple rules are used by Ruffus.

	The pipeline stage will be rerun if:

	If any of the Input files are new (newer than the Output files)

	If any of the Output files are missing

	In addition, it is possible to run jobs which create files from scratch.

	If no Input file names are supplied, the job will only run if any output file is missing.

	Finally, if no Output file names are supplied, the job will always run.

Missing files generate exceptions

If the inputs files for a job are missing, the task function will have no way
to produce its output. In this case, a MissingInputFileError exception will be raised
automatically. For example,

task.MissingInputFileError: No way to run job: Input file ['a.1'] does not exist
for Job = ["a.1" -> "a.2", "A file"]

Caveats: Coarse Timestamp resolution

Note that modification times have precision to the nearest second under some older file systems
(ext2/ext3?). This may be also be true for networked file systems.

Ruffus supplements the file system time resolution by independently recording the timestamp at
full OS resolution (usually to at least the millisecond) at job completion, when presumably the Output
files will have been created.

However, Ruffus only does this if the discrepancy between file time and system time is less than a second
(due to poor file system timestamp resolution). If there are large mismatches between the two, due for example
to network time slippage, misconfiguration etc, Ruffus reverts to using the file system time and adds a one second
delay between jobs (via time.sleep()) to make sure input and output file stamps are different.

If you know that your filesystem has coarse-grained timestamp resolution, you can always revert to this very conservative behaviour,
at the prices of some annoying 1s pauses, by setting pipeline_run(one_second_per_job = True)

Flag files: Checkpointing for the paranoid

One other way of checkpointing your pipelines is to create an extra “flag” file as an additional
Output file name. The flag file is only created or updated when everything else in the
job has completed successifully and written to disk. A missing or out of date flag file then
would be a sign for Ruffus that the task never completed properly in the first place.

This used to be much the best way of performing checkpointing in Ruffus and is still
the most bulletproof way of proceeding. For example, even the loss or corruption
of the checkpoint file, would not affect things greatly.

Nevertheless flag files are largely superfluous in modern Ruffus.

Chapter 11: Pipeline topologies and a compendium of Ruffus decorators

See also

	Manual Table of Contents

	decorators

Overview

Computational pipelines transform your data in stages until the final result is produced.

You can visualise your pipeline data flowing like water down a system of pipes.
Ruffus has many ways of joining up your pipes to create different topologies.

Note

The best way to design a pipeline is to:

	Write down the file names of the data as it flows across your pipeline.

	Draw lines between the file names to show how they should be connected together.

@transform

So far, our data files have been flowing through our pipelines independently in lockstep.

[image: ../../_images/bestiary_transform.png]
If we drew a graph of the data files moving through the pipeline, all of our flowcharts would look like something like this.

The @transform decorator connects up your data files in 1 to 1 operations, ensuring that for every Input, a corresponding Output is
generated, ready to got into the next pipeline stage. If we start with three sets of starting data, we would end up with three final sets of results.

A bestiary of Ruffus decorators

Very often, we would like to transform our data in more complex ways, this is where other Ruffus decorators come in.

[image: ../../_images/bestiary_decorators.png]

@originate

	Introduced in Chapter 3 More on @transform-ing data and @originate,
@originate generates Output files from scratch without the benefits of any Input files.

@merge

	A many to one operator.

	The last decorator at the far right to the figure, @merge merges multiple Input into one Output.

@split

	A one to many operator,

	@split is the evil twin of @merge. It takes a single set of Input and splits them into multiple smaller pieces.

	The best part of @split is that we don’t necessarily have to decide ahead of time how many smaller pieces it should produce. If we have encounter a larger file,
we might need to split it up into more fragments for greater parallelism.

	Since @split is a one to many operator, if you pass it many inputs (e.g. via @transform, it performs an implicit @merge step to make one
set of Input that you can redistribute into a different number of pieces. If you are looking to split each Input into further smaller fragments, then you
need @subdivide

@subdivide

	A many to even more operator.

	It takes each of multiple Input, and further subdivides them.

	Uses suffix(), formatter() or regex() to generate Output names from its Input files but like @split, we don’t have to decide ahead of time
how many smaller pieces each Input should be further divided into. For example, a large Input files might be subdivided into 7 pieces while the next job might,
however, split its Input into just 4 pieces.

@collate

	A many to fewer operator.

	@collate is the opposite twin of subdivide: it takes multiple Output and groups or collates them into bundles of Output.

	@collate uses formatter() or regex() to generate Output names.

	All Input files which map to the same Output are grouped together into one job (one task function call) which
produces one Output.

Combinatorics

More rarely, we need to generate a set of Output based on a combination or permutation or product of the Input.

For example, in bioinformatics, we might need to look for all instances of a set of genes in the genomes of a different number of species.
In other words, we need to find the @product of XXX genes x YYY species.

Ruffus provides decorators modelled on the “Combinatoric generators” in the Standard Python itertools [http://docs.python.org/2/library/itertools.html] library.

To use combinatoric decorators, you need to explicitly include them from Ruffus:

import ruffus
from ruffus import *
from ruffus.combinatorics import *

[image: ../../_images/bestiary_combinatorics.png]

@product

	Given several sets of Input, it generates all versus all Output. For example, if there are four sets of Input files, @product will generate WWW x XXX x YYY x ZZZ Output.

	Uses formatter to generate unique Output names from components parsed from any parts of any specified files in
all Input sets. In the above example, this allows the generation of WWW x XXX x YYY x ZZZ unique names.

@combinations

	Given one set of Input, it generates the combinations of r-length tuples among them.

	Uses formatter to generate unique Output names from components parsed from any parts of any specified files in all Input sets.

	For example, given Input called A, B and C, it will generate: A-B, A-C, B-C

	The order of Input items is ignored so either A-B or B-A will be included, not both

	Self-vs-self combinations (A-A) are excluded.

@combinations_with_replacement

	Given one set of Input, it generates the combinations of r-length tuples among them but includes self-vs-self conbinations.

	Uses formatter to generate unique Output names from components parsed from any parts of any specified files in all Input sets.

	For example, given Input called A, B and C, it will generate: A-A, A-B, A-C, B-B, B-C, C-C

@permutations

	Given one set of Input, it generates the permutations of r-length tuples among them. This excludes self-vs-self combinations but includes all orderings (A-B and B-A).

	Uses formatter to generate unique Output names from components parsed from any parts of any specified files in all Input sets.

	For example, given Input called A, B and C, it will generate: A-A, A-B, A-C, B-A, B-C, C-A, C-B

Chapter 12: Splitting up large tasks / files with @split

See also

	Manual Table of Contents

	@split syntax

	Example code for this chapter

Overview

A common requirement in computational pipelines is to split up a large task into
small jobs which can be run on different processors, (or sent to a computational
cluster). Very often, the number of jobs depends dynamically on the size of the
task, and cannot be known beforehand.

Ruffus uses the @split decorator to indicate that
the task function will produce an indeterminate number of independent Outputs from a single Input.

Example: Calculate variance for a large list of numbers in parallel

Suppose we wanted to calculate the variance [http://en.wikipedia.org/wiki/Variance] for
100,000 numbers, how can we parallelise the calculation so that we can get an answer as
speedily as possible?

We need to

	break down the problem into manageable chunks

	solve these in parallel, possibly on a computational cluster and then

	merge the partial solutions back together for a final result.

To complicate things, we usually do not want to hard-code the number of parallel chunks beforehand.
The degree of parallelism is often only apparent as we process our data.

Ruffus was designed to solve such problems which are common, for example, in bioinformatics and genomics.

A flowchart for our variance problem might look like this:

[image: ../../_images/manual_split_merge_example.jpg]
(In this toy example, we create our own starting data in create_random_numbers().)

Output files for @split

The Ruffus decorator @split is designed specifically with this run-time flexibility in mind:

@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):
 pass

This will split the incoming input_file_names into NNN number of outputs where NNN is not predetermined:

The output (second) parameter of @split often contains a glob [http://docs.python.org/library/glob.html] pattern like the *.chunks above.

Only after the task function has completed, will Ruffus match the Output parameter (*.chunks)
against the files which have been created by split_problem() (e.g. 1.chunks, 2.chunks, 3.chunks)

Be careful in specifying Output globs

Note that it is your responsibility to keep the Output specification tight enough so that Ruffus does not
pick up extraneous files.

You can specify multiple glob [http://docs.python.org/library/glob.html] patterns to match all the files which are the
result of the splitting task function. These can even cover different directories,
or groups of file names. This is a more extreme example:

@split("input.file", ['a*.bits', 'b*.pieces', 'somewhere_else/c*.stuff'])
def split_function (input_filename, output_files):
 "Code to split up 'input.file'"

Clean up previous pipeline runs

Problem arise when the current directory contains results of previous pipeline runs.

	For example, if the previous analysis involved a large data set, there might be 3 chunks: 1.chunks, 2.chunks, 3.chunks.

	In the current analysis, there might be a smaller data set which divides into only 2 chunks, 1.chunks and 2.chunks.

	Unfortunately, 3.chunks from the previous run is still hanging around and will be included erroneously by the glob *.chunks.

Warning

Your first duty in @split tasks functions should be to clean up

To help you clean up thoroughly, Ruffus initialises the output parameter to all files which match specification.

The first order of business is thus invariably to cleanup (delete with os.unlink) all files in Output.

#---
#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):
 """
 splits random numbers file into xxx files of chunk_size each
 """
 #
 # clean up any files from previous runs
 #
 #for ff in glob.glob("*.chunks"):
 for ff in input_file_names:
 os.unlink(ff)

(The first time you run the example code, *.chunks will initialise output_files to an empty list.)

1 to many

@split is a one to many operator because its
outputs are a list of independent items.

If @split generates 5 files, then this will lead to 5 jobs downstream.

This means we can just connect our old friend @transform to our pipeline
and the results of @split will be analysed in parallel. This code should look
familiar:

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):
 pass

Which results in output like this:

>>> pipeline_run()
 Job = [[random_numbers.list] -> *.chunks] completed
Completed Task = split_problem
 Job = [1.chunks -> 1.sums] completed
 Job = [10.chunks -> 10.sums] completed
 Job = [2.chunks -> 2.sums] completed
 Job = [3.chunks -> 3.sums] completed
 Job = [4.chunks -> 4.sums] completed
 Job = [5.chunks -> 5.sums] completed
 Job = [6.chunks -> 6.sums] completed
 Job = [7.chunks -> 7.sums] completed
 Job = [8.chunks -> 8.sums] completed
 Job = [9.chunks -> 9.sums] completed
Completed Task = sum_of_squares

Have a look at the Example code for this chapter

Nothing to many

Normally we would use @originate to create files from
scratch, for example at the beginning of the pipeline.

However, sometimes, it is not possible to determine ahead of time how many files you
will be creating from scratch. @split can also be useful even in such cases:

from random import randint
from ruffus import *
import os

Create between 2 and 5 files
@split(None, "*.start")
def create_initial_files(no_input_file, output_files):
 # cleanup first
 for oo in output_files:
 os.unlink(oo)
 # make new files
 for ii in range(randint(2,5)):
 open("%d.start" % ii, "w")

@transform(create_initial_files, suffix(".start"), ".processed")
def process_files(input_file, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [None -> *.start] completed
Completed Task = create_initial_files
 Job = [0.start -> 0.processed] completed
 Job = [1.start -> 1.processed] completed
Completed Task = process_files

Chapter 13: @merge multiple input into a single result

See also

	Manual Table of Contents

	@merge syntax

	Example code for this chapter

Overview of @merge

The previous chapter explained how Ruffus allows large
jobs to be split into small pieces with @split and analysed
in parallel using for example, our old friend @transform.

Having done this, our next task is to recombine the fragments into a seamless whole.

This is the role of the @merge decorator.

@merge is a many to one operator

@transform tasks multiple inputs and produces a single output, Ruffus
is again agnostic as to the sort of data contained within this single output. It can be a single
(string) file name, an arbitrary complicated nested structure with numbers, objects etc.
Or even a list.

The main thing is that downstream tasks will interpret this output as a single entity leading to a single
job.

@split and @merge are, in other words, about network topology.

Because of this @merge is also very useful for summarising the progress
in our pipeline. At key selected points, we can gather data from the multitude of data or disparate inputs
and @merge them to a single set of summaries.

Example: Combining partial solutions: Calculating variances

The previous chapter we had almost completed all the pieces of our flowchart:

[image: ../../_images/manual_split_merge_example.jpg]
What remains is to take the partial solutions from the different .sums files
and turn these into the variance as follows:

variance = (sum_squared - sum * sum / N)/N

where N is the number of values

See the wikipedia [http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance] entry for a discussion of
why this is a very naive approach.

To do this, all we have to do is iterate through all the values in *.sums,
add up the sums and sum_squared, and apply the above (naive) formula.

#
@merge files together
#
@merge(sum_of_squares, "variance.result")
def calculate_variance (input_file_names, output_file_name):
 """
 Calculate variance naively
 """
 #
 # initialise variables
 #
 all_sum_squared = 0.0
 all_sum = 0.0
 all_cnt_values = 0.0
 #
 # added up all the sum_squared, and sum and cnt_values from all the chunks
 #
 for input_file_name in input_file_names:
 sum_squared, sum, cnt_values = map(float, open(input_file_name).readlines())
 all_sum_squared += sum_squared
 all_sum += sum
 all_cnt_values += cnt_values
 all_mean = all_sum / all_cnt_values
 variance = (all_sum_squared - all_sum * all_mean)/(all_cnt_values)
 #
 # print output
 #
 open(output_file_name, "w").write("%s\n" % variance)

This results in the following equivalent function call:

calculate_variance (["1.sums", "2.sums", "3.sums",
 "4.sums", "5.sums", "6.sums",
 "7.sums", "8.sums", "9.sums, "10.sums"], "variance.result")

and the following display:

>>> pipeline_run()
 Job = [[1.sums, 10.sums, 2.sums, 3.sums, 4.sums, 5.sums, 6.sums, 7.sums, 8.sums, 9.sums] -> variance.result] completed
Completed Task = calculate_variance

The final result is in variance.result

Have a look at the complete example code for this chapter.

Chapter 14: Multiprocessing, drmaa and Computation Clusters

See also

	Manual Table of Contents

	@jobs_limit syntax

	pipeline_run() syntax

	drmaa_wrapper.run_job() syntax

Note

Remember to look at the example code:

	Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters

Overview

Multi Processing

Ruffus uses python multiprocessing [http://docs.python.org/library/multiprocessing.html] to run
each job in a separate process.

This means that jobs do not necessarily complete in the order of the defined parameters.
Task hierachies are, of course, inviolate: upstream tasks run before downstream, dependent tasks.

Tasks that are independent (i.e. do not precede each other) may be run in parallel as well.

The number of concurrent jobs can be set in pipeline_run:

pipeline_run([parallel_task], multiprocess = 5)

If multiprocess is set to 1, then jobs will be run on a single process.

Data sharing

Running jobs in separate processes allows Ruffus to make full use of the multiple
processors in modern computers. However, some multiprocessing guidelines [http://docs.python.org/library/multiprocessing.html#multiprocessing-programming]
should be borne in mind when writing Ruffus pipelines. In particular:

	Try not to pass large amounts of data between jobs, or at least be aware that this has to be marshalled
across process boundaries.

	Only data which can be pickled [http://docs.python.org/library/pickle.html] can be passed as
parameters to Ruffus task functions. Happily, that applies to almost any native Python data type.
The use of the rare, unpicklable object will cause python to complain (fail) loudly when Ruffus pipelines
are run.

Restricting parallelism with @jobs_limit

Calling pipeline_run(multiprocess = NNN) allows
multiple jobs (from multiple independent tasks) to be run in parallel. However, there
are some operations that consume so many resources that we might want them to run
with less or no concurrency.

For example, we might want to download some files via FTP but the server restricts
requests from each IP address. Even if the rest of the pipeline is running 100 jobs in
parallel, the FTP downloading must be restricted to 2 files at a time. We would really
like to keep the pipeline running as is, but let this one operation run either serially,
or with little concurrency.

	pipeline_run(multiprocess = NNN) sets the pipeline-wide concurrency but

	@jobs_limit(MMM) sets concurrency at MMM only for jobs in the decorated task.

The optional name (e.g. @jobs_limit(3, "ftp_download_limit")) allows the same limit to
be shared across multiple tasks. To be pedantic: a limit of 3 jobs at a time would be applied
across all tasks which have a @jobs_limit named "ftp_download_limit".

The example code uses up to 10 processes across the
pipeline, but runs the stage1_big and stage1_small tasks 3 at a time (shared across
both tasks). stage2 jobs run 5 at a time.

Using drmaa to dispatch work to Computational Clusters or Grid engines from Ruffus jobs

Ruffus has been widely used to manage work on computational clusters or grid engines. Though Ruffus
task functions cannot (yet!) run natively and transparently on remote cluster nodes, it is trivial
to dispatch work across the cluster.

From version 2.4 onwards, Ruffus includes an optional helper module which interacts with
python bindings [https://github.com/drmaa-python/drmaa-python] for the widely used drmaa [http://en.wikipedia.org/wiki/DRMAA]
Open Grid Forum API specification. This allows jobs to dispatch work to a computational cluster and wait until it completes.

Here are the necessary steps

1) Use a shared drmaa session:

Before your pipeline runs:

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

Cleanup after your pipeline completes:

#
pipeline functions go here
#
if __name__ == '__main__':
 drmaa_session.exit()

2) import ruffus.drmaa_wrapper

	The optional ruffus.drmaa_wrapper module needs to be imported explicitly:

imported ruffus.drmaa_wrapper explicitly
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

3) call drmaa_wrapper.run_job()

drmaa_wrapper.run_job() dispatches the work to a cluster node within a normal Ruffus job and waits for completion

This is the equivalent of os.system [http://docs.python.org/2/library/os.html#os.system] or
subprocess.check_output [http://docs.python.org/2/library/subprocess.html#subprocess.check_call] but the code will run remotely as specified:

 # ruffus.drmaa_wrapper.run_job
 stdout_res, stderr_res = run_job(cmd_str = "touch " + output_file,
 job_name = job_name,
 logger = logger,
 drmaa_session = drmaa_session,
 run_locally = options.local_run,
 job_other_options = job_other_options)

The complete code is available here

	drmaa_wrapper.run_job() is a convenience wrapper around the python drmaa bindings [https://github.com/drmaa-python/drmaa-python]
RunJob [http://drmaa-python.readthedocs.org/en/latest/tutorials.html#waiting-for-a-job] function.
It takes care of writing drmaa job templates for you.

	Each call creates a separate drmaa job template.

4) Use multithread: pipeline_run(multithread = NNN)

Warning

drmaa_wrapper.run_job()

requires pipeline_run (multithread = NNN)

and will not work with pipeline_run (multiprocess = NNN)

	Using multithreading rather than multiprocessing

	
	allows the drmaa session to be shared

	prevents “processing storms” which lock up the queue submission node when hundreds or thousands of grid engine / cluster commands complete at the same time.

pipeline_run (..., multithread = NNN, ...)

or if you are using ruffus.cmdline:

cmdline.run (options, multithread = options.jobs)

Normally multithreading reduces the amount of parallelism in python due to the python Global interpreter Lock (GIL) [http://en.wikipedia.org/wiki/Global_Interpreter_Lock].
However, as the work load is almost entirely on another computer (i.e. a cluster / grid engine node) with a separate python interpreter, any cost benefit calculations of this sort are moot.

5) Develop locally

drmaa_wrapper.run_job() provides two convenience parameters for developing grid engine pipelines:

	commands can run locally, i.e. on the local machine rather than on cluster nodes:

run_job(cmd_str, run_locally = True)

	Output files can be touch [http://en.wikipedia.org/wiki/Touch_(Unix)]ed, i.e. given the appearance of the work having being done without actually running the commands

run_job(cmd_str, touch_only = True)

Forcing a pipeline to appear up to date

Sometimes, we know that a pipeline has run to completion, that everything is up-to-date. However, Ruffus still insists on the basis
of file modification times that you need to rerun.

For example, sometimes a trivial accounting modification needs to be made to a data file.
Even though you know that this changes nothing in practice, Ruffus will detect the modification and
ask to rerun everything from that point forwards.

One way to convince Ruffus that everything is fine is to manually touch [http://en.wikipedia.org/wiki/Touch_(Unix)]
all subsequent data files one by one in sequence so that the file timestamps follow the appropriate progression.

You can also ask Ruffus to do this automatically for you by running the pipeline in touch [http://en.wikipedia.org/wiki/Touch_(Unix)]
mode:

pipeline_run(touch_files_only = True)

pipeline_run will run your pipeline script normally working backwards from any specified final target, or else the
last task in the pipeline. It works out where it should begin running, i.e. with the first out-of-date data files.
After that point, instead of calling your pipeline task functions, each missing or out-of-date file is
touch-ed [http://en.wikipedia.org/wiki/Touch_(Unix)] in turn so that the file modification dates
follow on successively.

This turns out to be useful way to check that your pipeline runs correctly by creating a series of dummy (empty files).
However, Ruffus does not know how to read your mind to know which files to create from @split or
@subdivide tasks.

Using ruffus.cmdline from version 2.4, you can just specify:

your script --touch_files_only [--other_options_of_your_own_etc]

Chapter 15: Logging progress through a pipeline

See also

	Manual Table of Contents

Note

Remember to look at the example code

Overview

There are two parts to logging with Ruffus:

	Logging progress through the pipeline

This produces the sort of output displayed in this manual:

>>> pipeline_run([parallel_io_task])
Task = parallel_io_task
 Job = ["a.1" -> "a.2", "A file"] completed
 Job = ["b.1" -> "b.2", "B file"] unnecessary: already up to date
Completed Task = parallel_io_task

	Logging your own messages from within your pipelined functions.

Because Ruffus may run each task function in separate process on a separate
CPU (multiprocessing), some attention has to be paid to how to send and
synchronise your log messages across process boundaries.

We shall deal with these in turn.

Logging task/job completion

By default, Ruffus logs each task and each job as it is completed to
sys.stderr [http://docs.python.org/2/library/sys.html#sys.stderr].

By default, Ruffus logs to STDERR: pipeline_run(logger = stderr_logger).

If you want to turn off all tracking messages as the pipeline runs, apart from setting verbose = 0, you
can also use the aptly named Ruffus black_hole_logger:

pipeline_run(logger = black_hole_logger)

Controlling logging verbosity

pipeline_run() currently has five levels of verbosity, set by the optional verbose
parameter which defaults to 1:

verbose = 0: nothing
verbose = 1: logs completed jobs/tasks;
verbose = 2: logs up to date jobs in incomplete tasks
verbose = 3: logs reason for running job
verbose = 4: logs messages useful only for debugging ruffus pipeline code

verbose > 5 are intended for debugging Ruffus by the developers and the details
are liable to change from release to release

Use ruffus.cmdline

As always, it is easiest to use ruffus.cmdline.

Set your script to

	write messages to STDERR with the --verbose option and

	to a log file with the --log_file option.

 from ruffus import *

 # Python logger which can be synchronised across concurrent Ruffus tasks
 logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

 @transform(["job1.input"], suffix(".input"), ".output1"),
 def first_task(input_file, output_file):
 pass

 pipeline_run(logger=logger)

Customising logging

You can also specify exactly how logging works by providing a logging [http://docs.python.org/library/logging.html] object
to pipeline_run() .
This log object should have debug() and info() methods.

Instead of writing your own, it is usually more convenient to use the python
logging [http://docs.python.org/library/logging.html]
module which provides logging classes with rich functionality.

The example code sets up a logger to a rotating set of files

Log your own messages

You need to take a little care when logging your custom messages within your pipeline.

	If your Ruffus pipeline may run in parallel, make sure that logging is synchronised.

	If your Ruffus pipeline may run across separate processes, send your logging object across process boundaries.

logging [http://docs.python.org/library/logging.html] objects can not be
pickled [http://docs.python.org/library/pickle.html] and shared naively across
processes. Instead, we need to create proxies which forward the logging to a single
shared log.

The ruffus.proxy_logger module provides an easy way to share
logging [http://docs.python.org/library/logging.html] objects among
jobs. This requires just two simple steps:

Note

	This is a good template for sharing non-picklable objects [http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled]
across processes.

1. Set up logging

Things are easiest if you are using ruffus.cmdline:

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

Otherwise, manually:

from ruffus.proxy_logger import *
(logger,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger",
 {"file_name" :"/my/lg.log"})

2. Share the proxy

Now, pass:

	logger (which forwards logging calls across jobs) and

	logging_mutex (which prevents different jobs which are logging simultaneously
from being jumbled up)

to each job:

@transform(initial_file,
 suffix(".input"),
 ".output1",
 logger, logging_mutex), # pass log and synchronisation as parameters
def first_task(input_file, output_file,
 logger, logging_mutex): # pass log and synchronisation as parameters
 pass

 # synchronise logging
 with logging_mutex:
 logger.info("Here we go logging...")

Chapter 16: @subdivide tasks to run efficiently and regroup with @collate

See also

	Manual Table of Contents

	@subdivide syntax

	@collate syntax

Overview

In Chapter 12 and Chapter 13, we saw how a large
task can be @split into small jobs to be analysed efficiently
in parallel. Ruffus can then @merge these back together
to give a single, unified result.

This assumes that your pipeline is processing one item at a time. Usually, however, we
will have, for example, 10 large pieces of data in play, each of which has to be
subdivided into smaller pieces for analysis before being put back together.

This is the role of @subdivide and @subdivide.

Like @split, the number of output files
@subdivide produces for each Input is not predetermined.

On the other hand, these output files should be named in such a way that they can
later be grouped back together later using @subdivide.

This will be clearer with some worked examples.

@subdivide in parallel

Let us start from 3 files with varying number of lines. We wish to process these two
lines at a time but we do not know ahead of time how long each file is:

from ruffus import *
import os, random, sys

Create files a random number of lines
@originate(["a.start",
 "b.start",
 "c.start"])
def create_test_files(output_file):
 cnt_lines = random.randint(1,3) * 2
 with open(output_file, "w") as oo:
 for ii in range(cnt_lines):
 oo.write("data item = %d\n" % ii)
 print " %s has %d lines" % (output_file, cnt_lines)

#
subdivide the input files into NNN fragment files of 2 lines each
#
@subdivide(create_test_files,
 formatter(),
 "{path[0]}/{basename[0]}.*.fragment",
 "{path[0]}/{basename[0]}")
def subdivide_files(input_file, output_files, output_file_name_stem):
 #
 # cleanup any previous results
 #
 for oo in output_files:
 os.unlink(oo)
 #
 # Output files contain two lines each
 # (new output files every even line)
 #
 cnt_output_files = 0
 for ii, line in enumerate(open(input_file)):
 if ii % 2 == 0:
 cnt_output_files += 1
 output_file_name = "%s.%d.fragment" % (output_file_name_stem, cnt_output_files)
 output_file = open(output_file_name, "w")
 print " Subdivide %s -> %s" % (input_file, output_file_name)
 output_file.write(line)

#
Analyse each fragment independently
#
@transform(subdivide_files, suffix(".fragment"), ".analysed")
def analyse_fragments(input_file, output_file):
 print " Analysing %s -> %s" % (input_file, output_file)
 with open(output_file, "w") as oo:
 for line in open(input_file):
 oo.write("analysed " + line)

This produces the following output:

>>> pipeline_run(verbose = 1)
 a.start has 2 lines
 Job = [None -> a.start] completed
 b.start has 6 lines
 Job = [None -> b.start] completed
 c.start has 6 lines
 Job = [None -> c.start] completed
Completed Task = create_test_files

 Subdivide a.start -> /home/lg/temp/a.1.fragment
 Job = [a.start -> a.*.fragment, a] completed

 Subdivide b.start -> /home/lg/temp/b.1.fragment
 Subdivide b.start -> /home/lg/temp/b.2.fragment
 Subdivide b.start -> /home/lg/temp/b.3.fragment
 Job = [b.start -> b.*.fragment, b] completed

 Subdivide c.start -> /home/lg/temp/c.1.fragment
 Subdivide c.start -> /home/lg/temp/c.2.fragment
 Subdivide c.start -> /home/lg/temp/c.3.fragment
 Job = [c.start -> c.*.fragment, c] completed

Completed Task = subdivide_files

 Analysing /home/lg/temp/a.1.fragment -> /home/lg/temp/a.1.analysed
 Job = [a.1.fragment -> a.1.analysed] completed
 Analysing /home/lg/temp/b.1.fragment -> /home/lg/temp/b.1.analysed
 Job = [b.1.fragment -> b.1.analysed] completed

 [...SEE EXAMPLE CODE FOR MORE LINES ...]

Completed Task = analyse_fragments

a.start has two lines and results in a single .fragment file,
while there are 3 b.*.fragment files because it has 6 lines.
Whatever their origin, all of the different fragment files are treated equally
in analyse_fragments() and processed (in parallel) in the same way.

Grouping using @collate

All that is left in our example is to reassemble the analysed fragments back together into
3 sets of results corresponding to the original 3 pieces of starting data.

This is straightforward by eye: the file names all have the same pattern: [abc].*.analysed:

a.1.analysed -> a.final_result
b.1.analysed -> b.final_result
b.2.analysed -> ..
b.3.analysed -> ..
c.1.analysed -> c.final_result
c.2.analysed -> ..

@collate does something similar:

	Specify a string substitution e.g. c.??.analysed -> c.final_result and

	Ask ruffus to group together any Input (e.g. c.1.analysed, c.2.analysed)
that will result in the same Output (e.g. c.final_result)

#
``XXX.??.analysed -> XXX.final_result``
Group results using original names
#
@collate(analyse_fragments,

 # split file name into [abc].NUMBER.analysed
 formatter("/(?P<NAME>[abc]+)\.\d+\.analysed$"),

 "{path[0]}/{NAME[0]}.final_result")
def recombine_analyses(input_file_names, output_file):
 with open(output_file, "w") as oo:
 for input_file in input_file_names:
 print " Recombine %s -> %s" % (input_file, output_file)
 for line in open(input_file):
 oo.write(line)

This produces the following output:

 Recombine /home/lg/temp/a.1.analysed -> /home/lg/temp/a.final_result
 Job = [[a.1.analysed] -> a.final_result] completed
 Recombine /home/lg/temp/b.1.analysed -> /home/lg/temp/b.final_result
 Recombine /home/lg/temp/b.2.analysed -> /home/lg/temp/b.final_result
 Recombine /home/lg/temp/b.3.analysed -> /home/lg/temp/b.final_result
 Job = [[b.1.analysed, b.2.analysed, b.3.analysed] -> b.final_result] completed
 Recombine /home/lg/temp/c.1.analysed -> /home/lg/temp/c.final_result
 Recombine /home/lg/temp/c.2.analysed -> /home/lg/temp/c.final_result
 Recombine /home/lg/temp/c.3.analysed -> /home/lg/temp/c.final_result
 Job = [[c.1.analysed, c.2.analysed, c.3.analysed] -> c.final_result] completed
Completed Task = recombine_analyses

Warning

	Input file names are grouped together not in a guaranteed order.

For example, the fragment files may not be sent to recombine_analyses(input_file_names, ...)
in alphabetically or any other useful order.

You may want to sort Input before concatenation.

	All Input are grouped together if they have both the same Output and Extra
parameters. If any string substitution is specified in any of the other Extra parameters
to @subdivide, they must give the same answers for Input
in the same group.

Chapter 17: @combinations, @permutations and all versus all @product

See also

	Manual Table of Contents

	@combinations_with_replacement

	@combinations

	@permutations

	@product

	formatter()

Note

Remember to look at the example code:

	Chapter 17: Python Code for @combinations, @permutations and all versus all @product

Overview

A surprising number of computational problems involve some sort of all versus all calculations.
Previously, this would have required all the parameters to be supplied using a custom function
on the fly with @files.

From version 2.4, Ruffus supports @combinations_with_replacement,
@combinations, @permutations,
@product.

These provide as far as possible all the functionality of the four combinatorics iterators
from the standard python itertools [http://docs.python.org/2/library/itertools.html]
functions of the same name.

Generating output with formatter()

String replacement always takes place via formatter(). Unfortunately,
the other Ruffus workhorses of regex() and suffix()
do not have sufficient syntactic flexibility.

Each combinatorics decorator deals with multiple sets of inputs whether this might be:

	a self-self comparison (such as @combinations_with_replacement,
@combinations, @permutations) or,

	a self-other comparison (@product)

The replacement strings thus require an extra level of indirection to refer to
parsed components.

	The first level refers to which set of inputs.

	The second level refers to which input file in any particular set of inputs.

For example, if the inputs are [A1,A2],[B1,B2],[C1,C2] vs [P1,P2],[Q1,Q2],[R1,R2] vs [X1,X2],[Y1,Y2],[Z1,Z2],
then '{basename[2][0]}' is the basename [http://docs.python.org/2/library/os.path.html#os.path.basename] for

	the third set of inputs (X,Y,Z) and

	the first file name string in each Input of that set (X1, Y1, Z1)

All vs all comparisons with @product

@product generates the Cartesian product between sets of input files,
i.e. all vs all comparisons.

The effect is analogous to a nested for loop.

@product can be useful, for example, in bioinformatics for finding
the corresponding genes (orthologues) for a set of proteins in multiple species.

>>> from itertools import product
>>> # product('ABC', 'XYZ') --> AX AY AZ BX BY BZ CX CY CZ
>>> ["".join(a) for a in product('ABC', 'XYZ')]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

This example Calculates the @product of A,B and P,Q and X,Y files

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):
 with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):
 with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
 ['y.1_start', 'y.2_start']])
def create_initial_files_xy(output_file):
 with open(output_file, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input
 formatter("(.start)$"), # match input file set # 1

 create_initial_files_pq, # Input
 formatter("(.start)$"), # match input file set # 2

 create_initial_files_xy, # Input
 formatter("(.start)$"), # match input file set # 3

 "{path[0][0]}/" # Output Replacement string
 "{basename[0][0]}_vs_" #
 "{basename[1][0]}_vs_" #
 "{basename[2][0]}.product", #

 "{path[0][0]}", # Extra parameter: path for 1st set of files, 1st file name

 ["{basename[0][0]}", # Extra parameter: basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def product_task(input_file, output_parameter, shared_path, basenames):
 print "# basenames = ", " ".join(basenames)
 print "input_parameter = ", input_file
 print "output_parameter = ", output_parameter, "\n"

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

Permute all k-tuple orderings of inputs without repeats using @permutations

	Generates the permutations for all the elements of a set of Input (e.g. A B C D),

	
	r-length tuples of input elements

	excluding repeated elements (A A)

	and order of the tuples is significant (both A B and B A).

>>> from itertools import permutations
>>> # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
>>> ["".join(a) for a in permutations("ABCD", 2)]
['AB', 'AC', 'AD', 'BA', 'BC', 'BD', 'CA', 'CB', 'CD', 'DA', 'DB', 'DC']

This following example calculates the @permutations of A,B,C,D files

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.permutations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
])
def permutations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

Select unordered k-tuples within inputs excluding repeated elements using @combinations

	Generates the combinations for all the elements of a set of Input (e.g. A B C D),

	
	r-length tuples of input elements

	without repeated elements (A A)

	where order of the tuples is irrelevant (either A B or B A, not both).

@combinations can be useful, for example, in calculating a transition probability matrix
for a set of states. The diagonals are meaningless “self-self” transitions which are excluded.

>>> from itertools import combinations
>>> # combinations('ABCD', 3) --> ABC ABD ACD BCD
>>> ["".join(a) for a in combinations("ABCD", 3)]
['ABC', 'ABD', 'ACD', 'BCD']

This example calculates the @combinations of A,B,C,D files

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 3 at a time
 3,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}_vs_"
 "{basename[2][1]}.combinations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def combinations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

Select unordered k-tuples within inputs including repeated elements with @combinations_with_replacement

	Generates the combinations_with_replacement for all the elements of a set of Input (e.g. A B C D),

	
	r-length tuples of input elements

	including repeated elements (A A)

	where order of the tuples is irrelevant (either A B or B A, not both).

@combinations_with_replacement can be useful,
for example, in bioinformatics for finding evolutionary relationships between genetic elements such as proteins
and genes. Self-self comparisons can be used a baseline for scaling similarity scores.

>>> from itertools import combinations_with_replacement
>>> # combinations_with_replacement('ABCD', 2) --> AA AB AC AD BB BC BD CC CD DD
>>> ["".join(a) for a in combinations_with_replacement('ABCD', 2)]
['AA', 'AB', 'AC', 'AD', 'BB', 'BC', 'BD', 'CC', 'CD', 'DD']

This example calculates the @combinations_with_replacement of A,B,C,D files

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.combinations_with_replacement",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2rd
])
def combinations_with_replacement_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if

See also

	Manual Table of Contents

	@active_if syntax in detail

Overview

It is sometimes useful to be able to switch on and off parts of a pipeline. For example, a pipeline
might have two difference code paths depending on the type of data it is being asked to analyse.

One surprisingly easy way to do this is to use a python if statement around particular task functions:

 from ruffus import *

 run_task1 = True

 @originate(['a.foo', 'b.foo'])
 def create_files(output_file):
 open(output_file, "w")

 if run_task1:
 # might not run
 @transform(create_files, suffix(".foo"), ".bar")
 def foobar(input_file, output_file):
 open(output_file, "w")

 @transform(foobar, suffix(".bar"), ".result")
 def wrap_up(input_file, output_file):
 open(output_file, "w")

 pipeline_run()

	This simple solution has a number of drawbacks:

	
	The on/off decision is a one off event that happens when the script is loaded. Ideally, we
would like some flexibility, and postpone the decision until pipeline_run() is invoked.

	When if is false, the entire task function becomes invisible, and if there are any
downstream tasks, as in the above example, Ruffus will complain loudly about
missing dependencies.

@active_if controls the state of tasks

	Switches tasks on and off at run time depending on its parameters

	Evaluated each time pipeline_run, pipeline_printout or pipeline_printout_graph is called.

	Dormant tasks behave as if they are up to date and have no output.

The Design and initial implementation were contributed by Jacob Biesinger

The following example shows its flexibility and syntax:

from ruffus import *
run_if_true_1 = True
run_if_true_2 = False
run_if_true_3 = True

#
task1
#
@originate(['a.foo', 'b.foo'])
def create_files(outfile):
 """
 create_files
 """
 open(outfile, "w").write(outfile + "\n")

#
Only runs if all three run_if_true conditions are met
#
@active_if determines if task is active
@active_if(run_if_true_1, lambda: run_if_true_2)
@active_if(run_if_true_3)
@transform(create_files, suffix(".foo"), ".bar")
def this_task_might_be_inactive(infile, outfile):
 open(outfile, "w").write("%s -> %s\n" % (infile, outfile))

@active_if switches off task because run_if_true_2 == False
pipeline_run(verbose = 3)

@active_if switches on task because all run_if_true conditions are met
run_if_true_2 = True
pipeline_run(verbose = 3)

The task starts off inactive:

>>> # @active_if switches off task "this_task_might_be_inactive" because run_if_true_2 == False
>>> pipeline_run(verbose = 3)

Task enters queue = create_files
create_files
 Job = [None -> a.foo] Missing file [a.foo]
 Job = [None -> b.foo] Missing file [b.foo]
 Job = [None -> a.foo] completed
 Job = [None -> b.foo] completed
Completed Task = create_files
Inactive Task = this_task_might_be_inactive

Now turn on the task:

>>> # @active_if switches on task "this_task_might_be_inactive" because all run_if_true conditions are met
>>> run_if_true_2 = True
>>> pipeline_run(verbose = 3)

Task enters queue = this_task_might_be_inactive

 Job = [a.foo -> a.bar] Missing file [a.bar]
 Job = [b.foo -> b.bar] Missing file [b.bar]
 Job = [a.foo -> a.bar] completed
 Job = [b.foo -> b.bar] completed
Completed Task = this_task_might_be_inactive

Chapter 19: Signal the completion of each stage of our pipeline with @posttask

See also

	Manual Table of Contents

	@posttask syntax

Overview

It is often useful to signal the completion of each task by specifying a specific
action to be taken or function to be called. This can range from
printing out some message, or touching [http://en.wikipedia.org/wiki/Touch_(Unix)] some sentinel file,
to emailing the author. This is particular useful if the task is a recipe apply to an unspecified number
of parameters in parallel in different jobs. If the task is never run, or if it
fails, needless-to-say no task completion action will happen.

Ruffus uses the @posttask decorator for this purpose.

@posttask

We can signal the completion of each task by specifying
one or more function(s) using @posttask

from ruffus import *

def task_finished():
 print "hooray"

@posttask(task_finished)
@originate("a.1")
def create_if_necessary(output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

This is such a short function, we might as well write it in-line:

@posttask(lambda: sys.stdout.write("hooray\n"))
@originate("a.1")
def create_if_necessary(output_file):
 open(output_file, "w")

Note

The function(s) provided to @posttask will be called if the pipeline passes
through a task, even if none of its jobs are run because they are up-to-date.
This happens when a upstream task is out-of-date, and the execution passes through
this point in the pipeline. See the example in Appendix 2: How dependency is checked
of this manual.

touch_file

One way to note the completion of a task is to create some sort of
“flag” file. Each stage in a traditional make pipeline would contain a
touch completed.flag.

This is such a useful idiom that Ruffus provides the shorthand touch_file:

from ruffus import *

@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run()

Adding several post task actions

You can, of course, add more than one different action to be taken on completion of the
task, either by stacking up as many @posttask decorators
as necessary, or by including several functions in the same @posttask:

from ruffus import *

@posttask(print_hooray, print_whoppee)
@posttask(print_hip_hip, touch_file("sentinel_flag"))
@originate("a.1")
def create_if_necessary(output_file):
 open(output_file, "w")

pipeline_run()

Chapter 20: Manipulating task inputs via string substitution using inputs() and add_inputs()

See also

	Manual Table of Contents

	inputs() syntax

	add_inputs() syntax

Note

Remember to look at the example code:

	Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()

Overview

The previous chapters have been described how Ruffus allows the Output names for each job
to be generated from the Input names via string substitution. This is how Ruffus can
automatically chain multiple tasks in a pipeline together seamlessly.

Sometimes it is useful to be able to modify the Input by string substitution
as well. There are two situations where this additional flexibility is needed:

	You need to add additional prequisites or filenames to the Input of every single job

	You need to add additional Input file names which are some variant of the existing ones.

Both will be much more obvious with some examples

Adding additional input prerequisites per job with add_inputs()

1. Example: compiling c++ code

Let us first compile some c++ ("*.cpp") files using plain @transform syntax:

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:
 open(source_file, "w")

from ruffus import *

@transform(source_files, suffix(".cpp"), ".o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

2. Example: Adding a common header file with add_inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:
 open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):
 open(output_file, "w")

@transform(source_files, suffix(".cpp"),
 # add header to the input of every job
 add_inputs("universal.h",
 # add result of task create_matching_headers to the input of every job
 create_matching_headers),
 ".o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

 >>> pipeline_run()
 Job = [hasty.cpp -> hasty.h] completed
 Job = [messy.cpp -> messy.h] completed
 Job = [tasty.cpp -> tasty.h] completed
 Completed Task = create_matching_headers
 Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
 Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
 Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed
 Completed Task = compile

3. Example: Additional Input can be tasks

We can also add a task name to add_inputs().
This chains the Output, i.e. run time results, of any previous task as
an additional Input to every single job in the task.

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):
 open(output_file, "w")

@transform(source_files, suffix(".cpp"),
 # add header to the input of every job
 add_inputs("universal.h",
 # add result of task create_matching_headers to the input of every job
 create_matching_headers),
 ".o")
def compile(input_filenames, output_file):
 open(output_file, "w")

pipeline_run()

>>> pipeline_run()
 Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
 Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
 Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed
Completed Task = compile

4. Example: Add corresponding files using add_inputs() with formatter or regex

The previous example created headers corresponding to our source files and added them
as the Input to the compilation. That is generally not what you want. Instead,
what is generally need is a way to

	Look up the exact corresponding header for the specific job, and not add all
possible files to all jobs in a task. When compiling hasty.cpp, we just need
to add hasty.h (and universal.h).

	Add a pre-existing file name (hasty.h already exists. Don’t create it via
another task.)

This is a surprisingly common requirement: In bioinformatics sometimes DNA or RNA
sequence files come singly in *.fastq [http://en.wikipedia.org/wiki/FASTQ_format]
and sometimes in matching pairs [http://en.wikipedia.org/wiki/DNA_sequencing_theory#Pairwise_end-sequencing]:
*1.fastq, *2.fastq etc. In the latter case, we often need to make sure that both
sequence files are being processed in tandem. One way is to take one file name (*1.fastq)
and look up the other.

add_inputs() uses standard Ruffus string substitution
via formatter and regex to lookup (generate) Input file names.
(As a rule suffix only substitutes Output file names.)

@transform(source_files,
 formatter(".cpp$"),
 # corresponding header for each source file
 add_inputs("{basename[0]}.h",
 # add header to the input of every job
 "universal.h"),
 "{basename[0]}.o")
def compile(input_filenames, output_file):
 open(output_file, "w")

This script gives the following output

>>> pipeline_run()
 Job = [[hasty.cpp, hasty.h, universal.h] -> hasty.o] completed
 Job = [[messy.cpp, messy.h, universal.h] -> messy.o] completed
 Job = [[tasty.cpp, tasty.h, universal.h] -> tasty.o] completed
Completed Task = compile

Replacing all input parameters with inputs()

The previous examples all added to the set of Input file names.
Sometimes it is necessary to replace all the Input parameters altogether.

5. Example: Running matching python scripts using inputs()

Here is a contrived example: we wish to find all cython/python files which have been
compiled into corresponding c++ source files.
Instead of compiling the c++, we shall invoke the corresponding python scripts.

Given three c++ files and their corresponding python scripts:

@transform(source_files,
 formatter(".cpp$"),

 # corresponding python file for each source file
 inputs("{basename[0]}.py"),

 "{basename[0]}.results")
def run_corresponding_python(input_filenames, output_file):
 open(output_file, "w")

The Ruffus code will call each python script corresponding to their c++ counterpart:

>>> pipeline_run()
 Job = [hasty.py -> hasty.results] completed
 Job = [messy.py -> messy.results] completed
 Job = [tasty.py -> tasty.results] completed
Completed Task = run_corresponding_python

Chapter 21: Esoteric: Generating parameters on the fly with @files

See also

	Manual Table of Contents

	@files on-the-fly syntax in detail

Note

Remember to look at the example code:

	Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files

Overview

The different Ruffus decorators connect up different tasks and
generate Output (file names) from your Input in all sorts of different ways.

However, sometimes, none of them quite do exactly what you need. And it becomes
necessary to generate your own Input and Output parameters on the fly.

Although this additional flexibility comes at the cost of a lot of extra inconvenient
code, you can continue to leverage the rest of Ruffus functionality such as
checking whether files are up to date or not.

@files syntax

To generate parameters on the fly, use the @files
with a generator function which yields one list / tuple of parameters per job.

For example:

from ruffus import *

generator function
def generate_parameters_on_the_fly():
 """
 returns one list of parameters per job
 """
 parameters = [
 ['A.input', 'A.output', (1, 2)], # 1st job
 ['B.input', 'B.output', (3, 4)], # 2nd job
 ['C.input', 'C.output', (5, 6)], # 3rd job
]
 for job_parameters in parameters:
 yield job_parameters

tell ruffus that parameters should be generated on the fly
@files(generate_parameters_on_the_fly)
def pipeline_task(input, output, extra):
 open(output, "w").write(open(input).read())
 sys.stderr.write("%d + %d => %d\n" % (extra[0] , extra[1], extra[0] + extra[1]))

pipeline_run()

Produces:

	Task = parallel_task

	1 + 2 = 3
Job = [“A”, 1, 2] completed
3 + 4 = 7
Job = [“B”, 3, 4] completed
5 + 6 = 11
Job = [“C”, 5, 6] completed

Note

Be aware that the parameter generating function may be invoked
more than once:
* The first time to check if this part of the pipeline is up-to-date.
* The second time when the pipeline task function is run.

The resulting custom inputs, outputs parameters per job are
treated normally for the purposes of checking to see if jobs are up-to-date and
need to be re-run.

A Cartesian Product, all vs all example

The accompanying example provides a more realistic reason why
you would want to generate parameters on the fly. It is a fun piece of code, which generates
N x M combinations from two sets of files as the inputs of a pipeline stage.

The inputs / outputs filenames are generated as a pair of nested for-loops to produce
the N (outside loop) x M (inside loop) combinations, with the appropriate parameters
for each job yielded per iteration of the inner loop. The gist of this is:

#___
#
Generator function
#
N x M jobs
#___
def generate_simulation_params ():
 """
 Custom function to generate
 file names for gene/gwas simulation study
 """
 for sim_file in get_simulation_files():
 for (gene, gwas) in get_gene_gwas_file_pairs():
 result_file = "%s.%s.results" % (gene, sim_file)
 yield (gene, gwas, sim_file), result_file

@files(generate_simulation_params)
def gwas_simulation(input_files, output_file):
 "..."

	If get_gene_gwas_file_pairs() produces:

	['a.sim', 'b.sim', 'c.sim']

	and get_gene_gwas_file_pairs() produces:

	[('1.gene', '1.gwas'), ('2.gene', '2.gwas')]

then we would end up with 3 x 2 = 6 jobs and the following equivalent function calls:

gwas_simulation(('1.gene', '1.gwas', 'a.sim'), "1.gene.a.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'a.sim'), "2.gene.a.sim.results")
gwas_simulation(('1.gene', '1.gwas', 'b.sim'), "1.gene.b.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'b.sim'), "2.gene.b.sim.results")
gwas_simulation(('1.gene', '1.gwas', 'c.sim'), "1.gene.c.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'c.sim'), "2.gene.c.sim.results")

The accompanying code looks slightly more complicated because
of some extra bookkeeping.

You can compare this approach with the alternative of using @product:

#___
#
N x M jobs
#___
@product(os.path.join(simulation_data_dir, "*.simulation"),
 formatter(),

 os.path.join(gene_data_dir, "*.gene"),
 formatter(),

 # add gwas as an input: looks like *.gene but with a differnt extension
 add_inputs("{path[1][0]/{basename[1][0]}.gwas")

 "{basename[0][0]}.{basename[1][0]}.results") # output file
def gwas_simulation(input_files, output_file):
 "..."

Chapter 22: Esoteric: Running jobs in parallel without files using @parallel

See also

	Manual Table of Contents

	@parallel syntax in detail

@parallel

@parallel supplies parameters for multiple jobs exactly like @files except that:

	The first two parameters are not treated like inputs and ouputs parameters,
and strings are not assumed to be file names

	Thus no checking of whether each job is up-to-date is made using inputs and outputs files

	No expansions of glob [http://docs.python.org/library/glob.html] patterns or output from previous tasks is carried out.

This syntax is most useful when a pipeline stage does not involve creating or consuming any files, and
you wish to forego the conveniences of @files, @transform etc.

The following code performs some arithmetic in parallel:

import sys
from ruffus import *
parameters = [
 ['A', 1, 2], # 1st job
 ['B', 3, 4], # 2nd job
 ['C', 5, 6], # 3rd job
]
@parallel(parameters)
def parallel_task(name, param1, param2):
 sys.stderr.write(" Parallel task %s: " % name)
 sys.stderr.write("%d + %d = %d\n" % (param1, param2, param1 + param2))

pipeline_run([parallel_task])

produces the following:

Task = parallel_task
 Parallel task A: 1 + 2 = 3
 Job = ["A", 1, 2] completed
 Parallel task B: 3 + 4 = 7
 Job = ["B", 3, 4] completed
 Parallel task C: 5 + 6 = 11
 Job = ["C", 5, 6] completed

Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with @check_if_uptodate

See also

	Manual Table of Contents

	@check_if_uptodate syntax in detail

@check_if_uptodate : Manual dependency checking

	tasks specified with most decorators such as

	
	@split

	@transform

	@merge

	@collate

	@collate

have automatic dependency checking based on file modification times.

Sometimes, you might want to decide have more control over whether to run jobs, especially
if a task does not rely on or produce files (i.e. with @parallel)

You can write your own custom function to decide whether to run a job.
This takes as many parameters as your task function, and needs to return a
tuple for whether an update is required, and why (i.e. tuple(bool, str))

This simple example which creates the file "a.1" if it does not exist:

from ruffus import *
@originate("a.1")
def create_if_necessary(output_file):
 open(output_file, "w")

pipeline_run([])

could be rewritten more laboriously as:

from ruffus import *
import os
def check_file_exists(input_file, output_file):
 if os.path.exists(output_file):
 return False, "File already exists"
 return True, "%s is missing" % output_file

@parallel([[None, "a.1"]])
@check_if_uptodate(check_file_exists)
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

	Both produce the same output:

	Task = create_if_necessary
 Job = [null, "a.1"] completed

Note

The function specified by @check_if_uptodate can be called
more than once for each job.

See the description here of how Ruffus decides which tasks to run.

Appendix 1: Flow Chart Colours with pipeline_printout_graph(…)

See also

	Manual Table of Contents

	pipeline_printout_graph(…)

	Download code

	Code for experimenting with colours

Flowchart colours

The appearance of Ruffus flowcharts produced by pipeline_printout_graph
can be extensively customised.

This is mainly controlled by the user_colour_scheme (note UK spelling of “colour”) parameter

Example:

Use colour scheme index = 1

pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
 user_colour_scheme = {
 "colour_scheme_index" :1,
 "Pipeline" :{"fontcolor" : '"#FF3232"' },
 "Key" :{"fontcolor" : "Red",
 "fillcolor" : '"#F6F4F4"' },
 "Task to run" :{"linecolor" : '"#0044A0"' },
 "Final target" :{"fillcolor" : '"#EFA03B"',
 "fontcolor" : "black",
 "dashed" : 0 }
 })

	There are 8 colour schemes by setting "colour_scheme_index":

	pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
 user_colour_scheme = {"colour_scheme_index" :6})

These colours were chosen after much fierce arguments between the authors and friends, and much
inspiration from http://kuler.adobe.com/#create/fromacolor. Please
feel free to submit any additional sets of colours for our consideration.

(Click here for image in svg.)

[image: ../../_images/flowchart_colour_schemes.png]

Appendix 2: How dependency is checked

See also

	Manual Table of Contents

Overview

How does Ruffus decide how to run your pipeline?

	In which order should pipelined functions be called?

	Which parts of the pipeline are up-to-date and do not need to be rerun?

Running all out-of-date tasks and dependents

[image: ../../_images/manual_dependencies_flowchart_intro.png]
By default, Ruffus will

	build a flow chart (dependency tree) of pipelined tasks (functions)

	start from the most ancestral tasks with the fewest dependencies (task1 and task4 in the flowchart above).

	walk up the tree to find the first incomplete / out-of-date tasks (i.e. task3 and task5.

	start running from there

	All down-stream (dependent) tasks will be re-run anyway, so we don’t have to test

	whether they are up-to-date or not.

Note

This means that Ruffus may ask any task if their jobs are out of date more than once:

	once when deciding which parts of the pipeline have to be run

	once just before executing the task.

Ruffus tries to be clever / efficient, and does the minimal amount of querying.

Forced Reruns

Even if a pipeline stage appears to be up to date,
you can always force the pipeline to include from one or more task functions.

This is particularly useful, for example, if the pipeline data hasn’t changed but
the analysis or computional code has.

pipeline_run(forcedtorun_tasks = [up_to_date_task1])

will run all tasks from up_to_date_task1 to final_task

Both the “target” and the “forced” lists can include as many tasks as you wish. All dependencies
are still carried out and out-of-date jobs rerun.

Esoteric option: Minimal Reruns

In the above example, if we were to delete the results of up_to_date_task1, Ruffus
would rerun up_to_date_task1, up_to_date_task2 and task3.

However, you might argue that so long as up_to_date_task2 is up-to-date, and it
is the only necessary prerequisite for task3, we should not be concerned about
up_to_date_task1.

This is enabled with:

pipeline_run([task6], gnu_make_maximal_rebuild_mode = False)

This option walks down the dependency tree and proceeds no further when it encounters
an up-to-date task (up_to_date_task2) whatever the state of what lies beyond it.

This rather dangerous option is useful if you don’t want to keep all the intermediate
files/results from upstream tasks. The pipeline will only not involve any incomplete
tasks which precede an up-to-date result.

This is seldom what you intend, and you should always check that the appropriate stages
of the pipeline are executed in the flowchart output.

Appendix 3: Exceptions thrown inside pipelines

Overview

The goal for Ruffus is that exceptions should just work out-of-the-box without any fuss.
This is especially important for exceptions that come from your code which may be raised
in a different process. Often multiple parallel operations (jobs or tasks) fail at the
same time. Ruffus will forward each of these exceptions with the tracebacks so you
can jump straight to the offending line.

This example shows separate exceptions from two jobs running in parallel:

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):
 raise Exception("OOPS")

pipeline_run(multiprocess = 2)

 >>> pipeline_run(multiprocess = 2)

 ruffus.ruffus_exceptions.RethrownJobError:

 Original exceptions:

 Exception #1
 'exceptions.Exception(OOPS)' raised in ...
 Task = def throw_exceptions_here(...):
 Job = [None -> b.start]

 Traceback (most recent call last):
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 685, in run_pooled_job_without_exceptions
 return_value = job_wrapper(param, user_defined_work_func, register_cleanup, touch_files_only)
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 549, in job_wrapper_output_files
 job_wrapper_io_files(param, user_defined_work_func, register_cleanup, touch_files_only, output_files_only = True)
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 504, in job_wrapper_io_files
 ret_val = user_defined_work_func(*(param[1:]))
 File "<stdin>", line 3, in throw_exceptions_here
 Exception: OOPS

 Exception #2
 'exceptions.Exception(OOPS)' raised in ...
 Task = def throw_exceptions_here(...):
 Job = [None -> a.start]

 Traceback (most recent call last):
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 685, in run_pooled_job_without_exceptions
 return_value = job_wrapper(param, user_defined_work_func, register_cleanup, touch_files_only)
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 549, in job_wrapper_output_files
 job_wrapper_io_files(param, user_defined_work_func, register_cleanup, touch_files_only, output_files_only = True)
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 504, in job_wrapper_io_files
 ret_val = user_defined_work_func(*(param[1:]))
 File "<stdin>", line 3, in throw_exceptions_here
 Exception: OOPS

.. image:: ../../images/manual_exceptions.png

Pipelines running in parallel accumulate Exceptions

As show above, by default Ruffus accumulates NN exceptions before interrupting the pipeline prematurely where
NN is the specified parallelism for pipeline_run(multiprocess = NN)

This seems a fair tradeoff between being able to gather detailed error information for
running jobs, and not wasting too much time for a task that is going to fail anyway.

Terminate pipeline immediately upon Exceptions

Set pipeline_run(exceptions_terminate_immediately = True)

To have all exceptions interrupt the pipeline immediately, invoke:

pipeline_run(exceptions_terminate_immediately = True)

For example, with this change, only a single exception will be thrown before the pipeline is interrupted:

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):
 raise Exception("OOPS")

pipeline_run(multiprocess = 2, exceptions_terminate_immediately = True)

 >>> pipeline_run(multiprocess = 2)

 ruffus.ruffus_exceptions.RethrownJobError:

 Original exception:

 Exception #1
 'exceptions.Exception(OOPS)' raised in ...
 Task = def throw_exceptions_here(...):
 Job = [None -> a.start]

 Traceback (most recent call last):
 [Tedious traceback snipped out!!!....]
 Exception: OOPS

raise Ruffus.JobSignalledBreak

The same can be accomplished on a finer scale by throwing the Ruffus.JobSignalledBreak Exception. Unlike
other exceptions, this causes an immediate halt in pipeline execution. If there are other exceptions in play at that
point, they will be rethrown in the main process but no new exceptions will be added.

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):
 raise JobSignalledBreak("OOPS")

pipeline_run(multiprocess = 2)

Display exceptions as they occur

In the following example, the jobs throw exceptions
at two second staggered intervals into the job. With log_exceptions = True, the
exceptions are displayed as they occur even though the pipeline continues running.

logger.error(…) will be invoked with the string representation of the each exception, and associated stack trace.

The default logger prints to sys.stderr, but as usual can be changed to any class from the logging module or compatible object via
pipeline_run(logger = XXX)

from ruffus import *
import time, os

@originate(["1.start", "2.start", "3.start", "4.start", "5.start"])
def throw_exceptions_here(output_file):
 delay = int(os.path.splitext(output_file)[0])
 time.sleep(delay * 2)
 raise JobSignalledBreak("OOPS")

pipeline_run(log_exceptions = True, multiprocess = 5)

Appendix 4: Names exported from Ruffus

See also

	Manual Table of Contents

Ruffus Names

This is a list of all the names Ruffus makes available:

	Category

	Manual

	Pipeline functions

	
pipeline_printout() (Manual)

pipeline_printout() (Manual)

pipeline_printout() (Manual)

	Decorators

	
@active_if (Manual)

@check_if_uptodate (Manual)

@collate (Manual)

@files (Manual)

@follows (Manual)

@jobs_limit (Manual)

@merge (Manual)

@mkdir (Manual)

@originate (Manual)

@parallel (Manual)

@posttask (Manual)

@split (Manual)

@subdivide (Manual)

@transform (Manual)

@files_re (Manual)

	Loggers

	
stderr_logger

black_hole_logger

	Parameter disambiguating Indicators

	
suffix (Manual)

regex (Manual)

formatter (Manual)

inputs (Manual)

inputs (Manual)

touch_file (Manual)

combine

mkdir (Manual)

output_from (Manual)

	Decorators in ruffus.combinatorics

	
@combinations (Manual)

@combinations_with_replacement (Manual)

@permutations (Manual)

@product (Manual)

	Decorators in ruffus.cmdline

	
get_argparse

setup_logging

run

MESSAGE

Appendix 5: @files: Deprecated syntax

Warning

	This is deprecated syntax

which is no longer supported and

should NOT be used in new code.

See also

	Manual Table of Contents

	decorators

	@files syntax in detail

Overview

The python functions which do the actual work of each stage or
task of a Ruffus pipeline are written by you.

The role of Ruffus is to make sure these functions are called in the right order,
with the right parameters, running in parallel using multiprocessing if desired.

The easiest way to specify parameters to Ruffus task functions is to use
the @files decorator.

@files

Running this code:

from ruffus import *

@files('a.1', ['a.2', 'b.2'], 'A file')
def single_job_io_task(infile, outfiles, text):
 for o in outfiles: open(o, "w")

prepare input file
open('a.1', "w")

pipeline_run()

	Is equivalent to calling:

	single_job_io_task('a.1', ['a.2', 'b.2'], 'A file')

	And produces:

	>>> pipeline_run()
 Job = [a.1 -> [a.2, b.2], A file] completed
Completed Task = single_job_io_task

Ruffus will automatically check if your task is up to date. The second time pipeline_run()
is called, nothing will happen. But if you update a.1, the task will rerun:

>>> open('a.1', "w")
>>> pipeline_run()
 Job = [a.1 -> [a.2, b.2], A file] completed
Completed Task = single_job_io_task

See chapter 2 for a more in-depth discussion of how Ruffus
decides which parts of the pipeline are complete and up-to-date.

Running the same code on different parameters in parallel

Your pipeline may require the same function to be called multiple times on independent parameters.
In which case, you can supply all the parameters to @files, each will be sent to separate jobs that
may run in parallel if necessary. Ruffus will check if each separate job is up-to-date using
the inputs and outputs (first two) parameters (See the Up-to-date jobs are not re-run unnecessarily).

For example, if a sequence
(e.g. a list or tuple) of 5 parameters are passed to @files, that indicates
there will also be 5 separate jobs:

from ruffus import *
parameters = [
 ['job1.file'], # 1st job
 ['job2.file', 4], # 2st job
 ['job3.file', [3, 2]], # 3st job
 [67, [13, 'job4.file']], # 4st job
 ['job5.file'], # 5st job
]
@files(parameters)
def task_file(*params):
 ""

Ruffus creates as many jobs as there are elements in parameters.

In turn, each of these elements consist of series of parameters which will be
passed to each separate job.

Thus the above code is equivalent to calling:

task_file('job1.file')
task_file('job2.file', 4)
task_file('job3.file', [3, 2])
task_file(67, [13, 'job4.file'])
task_file('job5.file')

What task_file() does with these parameters is up to you!

The only constraint on the parameters is that Ruffus will treat any first
parameter of each job as the inputs and any second as the output. Any
strings in the inputs or output parameters (including those nested in sequences)
will be treated as file names.

Thus, to pick the parameters out of one of the above jobs:

task_file(67, [13, 'job4.file'])

inputs == 67

outputs == [13, 'job4.file']

The solitary output filename is job4.file

Checking if jobs are up to date

Usually we do not want to run all the stages in a pipeline but only where
the input data has changed or is no longer up to date.

One easy way to do this is to check the modification times for files produced
at each stage of the pipeline.

Let us first create our starting files a.1 and b.1

We can then run the following pipeline function to create

	a.2 from a.1 and

	b.2 from b.1

create starting files
open("a.1", "w")
open("b.1", "w")

from ruffus import *
parameters = [
 ['a.1', 'a.2', 'A file'], # 1st job
 ['b.1', 'b.2', 'B file'], # 2nd job
]

@files(parameters)
def parallel_io_task(infile, outfile, text):
 # copy infile contents to outfile
 infile_text = open(infile).read()
 f = open(outfile, "w").write(infile_text + "\n" + text)

pipeline_run()

	This produces the following output:

	>>> pipeline_run()
 Job = [a.1 -> a.2, A file] completed
 Job = [b.1 -> b.2, B file] completed
Completed Task = parallel_io_task

If you called pipeline_run() again, nothing would happen because the files are up to date:

a.2 is more recent than a.1 and

b.2 is more recent than b.1

	However, if you subsequently modified a.1 again:

	open("a.1", "w")
pipeline_run(verbose = 1)

you would see the following:

>>> pipeline_run([parallel_io_task])
Task = parallel_io_task
 Job = ["a.1" -> "a.2", "A file"] completed
 Job = ["b.1" -> "b.2", "B file"] unnecessary: already up to date
Completed Task = parallel_io_task

The 2nd job is up to date and will be skipped.

Appendix 6: @files_re: Deprecated syntax using regular expressions

Warning

	This is deprecated syntax

which is no longer supported and

should NOT be used in new code.

See also

	Manual Table of Contents

	decorators

	@files_re syntax in detail

Overview

@files_re combines the functionality of @transform, @collate and @merge in
one overloaded decorator.

This is the reason why its use is discouraged. @files_re syntax is far too overloaded
and context-dependent to support its myriad of different functions.

The following documentation is provided to help maintain historical Ruffus usage.

Transforming input and output filenames

For example, the following code takes files from
the previous pipeline task, and makes new output parameters with the .sums suffix
in place of the .chunks suffix:

@transform(step_4_split_numbers_into_chunks, suffix(".chunks"), ".sums")
def step_5_calculate_sum_of_squares (input_file_name, output_file_name):
 #
 # calculate sums and sums of squares for all values in the input_file_name
 # writing to output_file_name
 ""

This can be written using @files_re equivalently:

@files_re(step_4_split_numbers_into_chunks, r".chunks", r".sums")
def step_5_calculate_sum_of_squares (input_file_name, output_file_name):
""

Collating many inputs into a single output

Similarly, the following code collects inputs
from the same species in the same directory:

@collate('*.animals', # inputs = all *.animal files
 regex(r'mammals.([^.]+)'), # regular expression
 r'\1/animals.in_my_zoo', # single output file per species
 r'\1') # species name
def capture_mammals(infiles, outfile, species):
 # summarise all animals of this species
 ""

This can be written using @files_re equivalently using the combine indicator:

@files_re('*.animals', # inputs = all *.animal files
 r'mammals.([^.]+)', # regular expression
 combine(r'\1/animals.in_my_zoo'), # single output file per species
 r'\1') # species name
def capture_mammals(infiles, outfile, species):
 # summarise all animals of this species
 ""

Generating input and output parameter using regular expresssions

The following code generates additional
input prerequisite file names which match the original input files.

We want each job of our analyse() function to get corresponding pairs
of xx.chunks and xx.red_indian files when

*.chunks are generated by the task function split_up_problem() and
*.red_indian are generated by the task function make_red_indians():

@follows(make_red_indians)
@transform(split_up_problem, # starting set of *inputs*
 regex(r"(.*).chunks"), # regular expression
 inputs([r"\g<0>", # xx.chunks
 r"\1.red_indian"]), # important.file
 r"\1.results" # xx.results
)
def analyse(input_filenames, output_file_name):
 "Do analysis here"

The equivalent code using @files_re looks very similar:

@follows(make_red_indians)
@files_re(split_up_problem, # starting set of *inputs*
 r"(.*).chunks", # regular expression
 [r"\g<0>", # xx.chunks
 r"\1.red_indian"]), # important.file
 r"\1.results") # xx.results
def analyse(input_filenames, output_file_name):
 "Do analysis here"

Chapter 1: Python Code for An introduction to basic Ruffus syntax

See also

	Manual Table of Contents

	@transform syntax in detail

	Back to Chapter 1: An introduction to basic Ruffus syntax

Your first Ruffus script

::

#
The starting data files would normally exist beforehand!
We create some empty files for this example
#
starting_files = ["a.fasta", "b.fasta", "c.fasta"]

for ff in starting_files:
 open(ff, "w")

from ruffus import *

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files
 suffix(".fasta"), # suffix = .fasta
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_file,
 output_file):
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage
 suffix(".sam"), # suffix = .sam
 ".bam") # Output suffix = .bam
def compress_sam_file(input_file,
 output_file):
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage
 suffix(".bam"), # suffix = .bam
 ".statistics", # Output suffix = .statistics
 "use_linear_model") # Extra statistics parameter
def summarise_bam_file(input_file,
 output_file,
 extra_stats_parameter):
 """
 Sketch of real analysis function
 """
 ii = open(input_file)
 oo = open(output_file, "w")

pipeline_run()

Resulting Output

>>> pipeline_run()
 Job = [a.fasta -> a.sam] completed
 Job = [b.fasta -> b.sam] completed
 Job = [c.fasta -> c.sam] completed
Completed Task = map_dna_sequence
 Job = [a.sam -> a.bam] completed
 Job = [b.sam -> b.bam] completed
 Job = [c.sam -> c.bam] completed
Completed Task = compress_sam_file
 Job = [a.bam -> a.statistics, use_linear_model] completed
 Job = [b.bam -> b.statistics, use_linear_model] completed
 Job = [c.bam -> c.statistics, use_linear_model] completed
Completed Task = summarise_bam_file

Chapter 1: Python Code for Transforming data in a pipeline with @transform

See also

	Manual Table of Contents

	@transform syntax in detail

	Back to Chapter 2: Transforming data in a pipeline with @transform

Your first Ruffus script

#
The starting data files would normally exist beforehand!
We create some empty files for this example
#
starting_files = [("a.1.fastq", "a.2.fastq"),
 ("b.1.fastq", "b.2.fastq"),
 ("c.1.fastq", "c.2.fastq")]

for ff_pair in starting_files:
 open(ff_pair[0], "w")
 open(ff_pair[1], "w")

from ruffus import *

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files
 suffix(".1.fastq"), # suffix = .1.fastq
 ".sam") # Output suffix = .sam
def map_dna_sequence(input_files,
 output_file):
 # remember there are two input files now
 ii1 = open(input_files[0])
 ii2 = open(input_files[1])
 oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage
 suffix(".sam"), # suffix = .sam
 ".bam") # Output suffix = .bam
def compress_sam_file(input_file,
 output_file):
 ii = open(input_file)
 oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage
 suffix(".bam"), # suffix = .bam
 ".statistics", # Output suffix = .statistics
 "use_linear_model") # Extra statistics parameter
def summarise_bam_file(input_file,
 output_file,
 extra_stats_parameter):
 """
 Sketch of real analysis function
 """
 ii = open(input_file)
 oo = open(output_file, "w")

pipeline_run()

Resulting Output

>>> pipeline_run()
 Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
 Job = [[b.1.fastq, b.2.fastq] -> b.sam] completed
 Job = [[c.1.fastq, c.2.fastq] -> c.sam] completed
Completed Task = map_dna_sequence
 Job = [a.sam -> a.bam] completed
 Job = [b.sam -> b.bam] completed
 Job = [c.sam -> c.bam] completed
Completed Task = compress_sam_file
 Job = [a.bam -> a.statistics, use_linear_model] completed
 Job = [b.bam -> b.statistics, use_linear_model] completed
 Job = [c.bam -> c.statistics, use_linear_model] completed
Completed Task = summarise_bam_file

Chapter 3: Python Code for More on @transform-ing data

See also

	Manual Table of Contents

	@transform syntax in detail

	Back to Chapter 3: More on @transform-ing data and @originate

Producing several items / files per job

from ruffus import *

#---
Create pairs of input files
#
first_task_params = [
 ['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start'],
]

for input_file_pairs in first_task_params:
 for input_file in input_file_pairs:
 open(input_file, "w")

#---
#
first task
#
@transform(first_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass

#---
#
second task
#
@transform(first_task, suffix(".output.1"), ".output2")
def second_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
#
Run
#
pipeline_run([second_task])

Resulting Output

>>> pipeline_run([second_task])
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = first_task
 Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
 Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
 Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
Completed Task = second_task

Defining tasks function out of order

 from ruffus import *

 #---
 # Create pairs of input files
 #
 first_task_params = [
 ['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start'],
]

 for input_file_pairs in first_task_params:
 for input_file in input_file_pairs:
 open(input_file, "w")

 #---
 #
 # second task defined first
 #
 # task name string wrapped in output_from(...)
 @transform(output_from("first_task"), suffix(".output.1"), ".output2")
 def second_task(input_files, output_file):
 with open(output_file, "w"): pass

 #---
 #
 # first task
 #
 @transform(first_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
 def first_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass

 #---
 #
 # Run
 #
 pipeline_run([second_task])

Resulting Output

>>> pipeline_run([second_task])
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = first_task
 Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
 Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
 Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
Completed Task = second_task

Multiple dependencies

 from ruffus import *
 import time
 import random

 #---
 # Create pairs of input files
 #
 first_task_params = [
 ['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start'],
]
 second_task_params = [
 ['job4.a.start', 'job4.b.start'],
 ['job5.a.start', 'job5.b.start'],
 ['job6.a.start', 'job6.b.start'],
]

 for input_file_pairs in first_task_params + second_task_params:
 for input_file in input_file_pairs:
 open(input_file, "w")

 #---
 #
 # first task
 #
 @transform(first_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
 def first_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass
 time.sleep(random.random())

 #---
 #
 # second task
 #
 @transform(second_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
 def second_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass
 time.sleep(random.random())

 #---
 #
 # third task
 #
 # depends on both first_task() and second_task()
 @transform([first_task, second_task], suffix(".output.1"), ".output2")
 def third_task(input_files, output_file):
 with open(output_file, "w"): pass

 #---
 #
 # Run
 #
 pipeline_run([third_task], multiprocess = 6)

Resulting Output

>>> pipeline_run([third_task], multiprocess = 6)
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = second_task
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = first_task
 Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
 Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
 Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
 Job = [[job4.a.output.1, job4.a.output.extra.1] -> job4.a.output2] completed
 Job = [[job5.a.output.1, job5.a.output.extra.1] -> job5.a.output2] completed
 Job = [[job6.a.output.1, job6.a.output.extra.1] -> job6.a.output2] completed
Completed Task = third_task

Multiple dependencies after @follows

from ruffus import *
import time
import random

#---
Create pairs of input files
#
first_task_params = [
 ['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start'],
]
second_task_params = [
 ['job4.a.start', 'job4.b.start'],
 ['job5.a.start', 'job5.b.start'],
 ['job6.a.start', 'job6.b.start'],
]

for input_file_pairs in first_task_params + second_task_params:
 for input_file in input_file_pairs:
 open(input_file, "w")

#---
#
first task
#
@transform(first_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass
 time.sleep(random.random())

#---
#
second task
#
@follows("first_task")
@transform(second_task_params, suffix(".start"),
 [".output.1",
 ".output.extra.1"],
 "some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,
 extra_parameter_str, extra_parameter_num):
 for output_file in output_file_pair:
 with open(output_file, "w"):
 pass
 time.sleep(random.random())

#---
#
third task
#
depends on both first_task() and second_task()
@transform([first_task, second_task], suffix(".output.1"), ".output2")
def third_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
#
Run
#
pipeline_run([third_task], multiprocess = 6)

Resulting Output: first_task completes before second_task

>>> pipeline_run([third_task], multiprocess = 6)
 Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = first_task
 Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
 Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed
Completed Task = second_task
 Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
 Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
 Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
 Job = [[job4.a.output.1, job4.a.output.extra.1] -> job4.a.output2] completed
 Job = [[job5.a.output.1, job5.a.output.extra.1] -> job5.a.output2] completed
 Job = [[job6.a.output.1, job6.a.output.extra.1] -> job6.a.output2] completed

Chapter 4: Python Code for Creating files with @originate

See also

	Manual Table of Contents

	@transform syntax in detail

	Back to Chapter 4: @originate

Using @originate

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):
 with open(output_file, "w"): pass

#
Run
#
pipeline_run([second_task])

Resulting Output

 Job = [None -> [job1.a.start, job1.b.start]] completed
 Job = [None -> [job2.a.start, job2.b.start]] completed
 Job = [None -> [job3.a.start, job3.b.start]] completed
Completed Task = create_initial_file_pairs
 Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed
 Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
 Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed
Completed Task = first_task
 Job = [job1.a.output.1 -> job1.a.output.2] completed
 Job = [job2.a.output.1 -> job2.a.output.2] completed
 Job = [job3.a.output.1 -> job3.a.output.2] completed
Completed Task = second_task

Chapter 5: Python Code for Understanding how your pipeline works with pipeline_printout(…)

See also

	Manual Table of Contents

	pipeline_printout(…) syntax

	Back to Chapter 5: Understanding how your pipeline works

Display the initial state of the pipeline

from ruffus import *
import sys

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):
 with open(output_file, "w"): pass

pipeline_printout(sys.stdout, [second_task], verbose = 1)
pipeline_printout(sys.stdout, [second_task], verbose = 3)

Normal Output

>>> pipeline_printout(sys.stdout, [second_task], verbose = 1)

__
Tasks which will be run:

Task = create_initial_file_pairs
Task = first_task
Task = second_task

High Verbosity Output

>>> pipeline_printout(sys.stdout, [second_task], verbose = 4)

__
Tasks which will be run:

Task = create_initial_file_pairs
 Job = [None
 -> job1.a.start
 -> job1.b.start]
 Job needs update: Missing files [job1.a.start, job1.b.start]
 Job = [None
 -> job2.a.start
 -> job2.b.start]
 Job needs update: Missing files [job2.a.start, job2.b.start]
 Job = [None
 -> job3.a.start
 -> job3.b.start]
 Job needs update: Missing files [job3.a.start, job3.b.start]

Task = first_task
 Job = [[job1.a.start, job1.b.start]
 -> job1.a.output.1]
 Job needs update: Missing files [job1.a.start, job1.b.start, job1.a.output.1]
 Job = [[job2.a.start, job2.b.start]
 -> job2.a.output.1]
 Job needs update: Missing files [job2.a.start, job2.b.start, job2.a.output.1]
 Job = [[job3.a.start, job3.b.start]
 -> job3.a.output.1]
 Job needs update: Missing files [job3.a.start, job3.b.start, job3.a.output.1]

Task = second_task
 Job = [job1.a.output.1
 -> job1.a.output.2]
 Job needs update: Missing files [job1.a.output.1, job1.a.output.2]
 Job = [job2.a.output.1
 -> job2.a.output.2]
 Job needs update: Missing files [job2.a.output.1, job2.a.output.2]
 Job = [job3.a.output.1
 -> job3.a.output.2]
 Job needs update: Missing files [job3.a.output.1, job3.a.output.2]

__

Display the partially up-to-date pipeline

Run the pipeline, modify job1.stage so that the second task is no longer up-to-date
and printout the pipeline stage again:

>>> pipeline_run([second_task], verbose=3)
Task enters queue = create_initial_file_pairs
 Job = [None -> [job1.a.start, job1.b.start]]
 Job = [None -> [job2.a.start, job2.b.start]]
 Job = [None -> [job3.a.start, job3.b.start]]
 Job = [None -> [job1.a.start, job1.b.start]] completed
 Job = [None -> [job2.a.start, job2.b.start]] completed
 Job = [None -> [job3.a.start, job3.b.start]] completed
Completed Task = create_initial_file_pairs
Task enters queue = first_task
 Job = [[job1.a.start, job1.b.start] -> job1.a.output.1]
 Job = [[job2.a.start, job2.b.start] -> job2.a.output.1]
 Job = [[job3.a.start, job3.b.start] -> job3.a.output.1]
 Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed
 Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
 Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed
Completed Task = first_task
Task enters queue = second_task
 Job = [job1.a.output.1 -> job1.a.output.2]
 Job = [job2.a.output.1 -> job2.a.output.2]
 Job = [job3.a.output.1 -> job3.a.output.2]
 Job = [job1.a.output.1 -> job1.a.output.2] completed
 Job = [job2.a.output.1 -> job2.a.output.2] completed
 Job = [job3.a.output.1 -> job3.a.output.2] completed
Completed Task = second_task

modify job1.stage1
>>> open("job1.a.output.1", "w").close()

At a verbosity of 6, even jobs which are up-to-date will be displayed:

>>> pipeline_printout(sys.stdout, [second_task], verbose = 6)

__
Tasks which are up-to-date:

Task = create_initial_file_pairs
 Job = [None
 -> job1.a.start
 -> job1.b.start]
 Job = [None
 -> job2.a.start
 -> job2.b.start]
 Job = [None
 -> job3.a.start
 -> job3.b.start]

Task = first_task
 Job = [[job1.a.start, job1.b.start]
 -> job1.a.output.1]
 Job = [[job2.a.start, job2.b.start]
 -> job2.a.output.1]
 Job = [[job3.a.start, job3.b.start]
 -> job3.a.output.1]

__

__
Tasks which will be run:

Task = second_task
 Job = [job1.a.output.1
 -> job1.a.output.2]
 Job needs update:
 Input files:
 * 22 Jul 2014 15:29:19.33: job1.a.output.1
 Output files:
 * 22 Jul 2014 15:29:07.53: job1.a.output.2

 Job = [job2.a.output.1
 -> job2.a.output.2]
 Job = [job3.a.output.1
 -> job3.a.output.2]

__

We can now see that the there is only one job in “second_task” which needs to be re-run
because ‘job1.stage1’ has been modified after ‘job1.stage2’

Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(…)

See also

	Manual Table of Contents

	pipeline_printout_graph(…) syntax

	Back to Chapter 7: Displaying the pipeline visually

Code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	from ruffus import *
import sys

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):
 with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):
 with open(output_file, "w"): pass

Print graph before running pipeline

#---
#
Show flow chart and tasks before running the pipeline
#
print "Show flow chart and tasks before running the pipeline"
pipeline_printout_graph (open("simple_tutorial_stage5_before.png", "w"),
 "png",
 [second_task],
 minimal_key_legend=True)

#---
#
Run
#
pipeline_run([second_task])

modify job1.stage1
open("job1.a.output.1", "w").close()

Print graph after everything apart from ``job1.a.output.1`` is update

#---
#
Show flow chart and tasks after running the pipeline
#
print "Show flow chart and tasks after running the pipeline"
pipeline_printout_graph (open("simple_tutorial_stage5_after.png", "w"),
 "png",
 [second_task],
 no_key_legend=True)

Resulting Flowcharts

	[image: Before running the pipeline]

Before

	[image: After running the pipeline]

After

	[image: Legend key]

Legend

Chapter 8: Python Code for Specifying output file names with formatter() and regex()

See also

	Manual Table of Contents

	suffix() syntax

	formatter() syntax

	regex() syntax

	Back to Chapter 8: Specifying output file names

Example Code for suffix()

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.b.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
suffix
#
@transform(create_initial_file_pairs, # name of previous task(s) (or list of files, or a glob)
 suffix(".start"), # matching suffix of the "input file"
 [".output.a.1", 45, ".output.b.1"]) # resulting suffix
def first_task(input_files, output_parameters):
 print " input_parameters = ", input_files
 print " output_parameters = ", output_parameters

#
Run
#
pipeline_run([first_task])

Example Code for formatter()

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.c.start']])
def create_initial_file_pairs(output_files):
 # create both files as necessary
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
formatter
#

first task
@transform(create_initial_file_pairs, # Input

 formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
 ".+/job[123].b.start"), # Match only "b" files

 ["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
 "{path[1]}/jobs{JOBNUMBER[0]}.output.b.1", 45])
def first_task(input_files, output_parameters):
 print "input_parameters = ", input_files
 print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

Example Code for formatter() with replacements in extra arguments

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.c.start']])
def create_initial_file_pairs(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
print job number as an extra argument
#

first task
@transform(create_initial_file_pairs, # Input

 formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
 ".+/job[123].b.start"), # Match only "b" files

 ["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
 "{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"],

 "{JOBNUMBER[0]}"
def first_task(input_files, output_parameters, job_number):
 print job_number, ":", input_files

pipeline_run(verbose=0)

Example Code for formatter() in Zoos

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
 # List of animals and plants
 ["tiger/mammals.wild.animals",
 "lion/mammals.wild.animals",
 "lion/mammals.handreared.animals",
 "dog/mammals.tame.animals",
 "dog/mammals.wild.animals",
 "crocodile/reptiles.wild.animals",
 "rose/flowering.handreared.plants"])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

Results in:

::

 >>> pipeline_run(verbose=0)
 Food for the wild crocodile = ./reptiles/wild.crocodile.food will be placed in ./reptiles
 Food for the tame dog = ./mammals/tame.dog.food will be placed in ./mammals
 Food for the wild dog = ./mammals/wild.dog.food will be placed in ./mammals
 Food for the handreared lion = ./mammals/handreared.lion.food will be placed in ./mammals
 Food for the wild lion = ./mammals/wild.lion.food will be placed in ./mammals
 Food for the wild tiger = ./mammals/wild.tiger.food will be placed in ./mammals

Example Code for regex() in zoos

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
 # List of animals and plants
 ["tiger/mammals.wild.animals",
 "lion/mammals.wild.animals",
 "lion/mammals.handreared.animals",
 "dog/mammals.tame.animals",
 "dog/mammals.wild.animals",
 "crocodile/reptiles.wild.animals",
 "rose/flowering.handreared.plants"])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 r"\1/\g<clade>/\g<tame>.\2.food", # Replacement

 r"\1/\g<clade>", # new_directory
 r"\2", # animal_name
 "\g<tame>") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

Results in:

::

 >>> pipeline_run(verbose=0)
 Food for the wild crocodile = reptiles/wild.crocodile.food will be placed in reptiles
 Food for the tame dog = mammals/tame.dog.food will be placed in mammals
 Food for the wild dog = mammals/wild.dog.food will be placed in mammals
 Food for the handreared lion = mammals/handreared.lion.food will be placed in mammals
 Food for the wild lion = mammals/wild.lion.food will be placed in mammals
 Food for the wild tiger = mammals/wild.tiger.food will be placed in mammals

Chapter 9: Python Code for Preparing directories for output with @mkdir()

See also

	Manual Table of Contents

	mkdir() syntax

	formatter() syntax

	regex() syntax

	Back to Chapter 9: Preparing directories for output with @mkdir()

Code for formatter() Zoo example

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])
@originate(
 # List of animals and plants
 ["tiger/mammals.wild.animals",
 "lion/mammals.wild.animals",
 "lion/mammals.handreared.animals",
 "dog/mammals.tame.animals",
 "dog/mammals.wild.animals",
 "crocodile/reptiles.wild.animals",
 "rose/flowering.handreared.plants"])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

create directories for each clade
@mkdir(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}") # new_directory
Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

 formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

 "{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

 "{subpath[0][1]}/{clade[0]}", # new_directory
 "{subdir[0][0]}", # animal_name
 "{tame[0]}") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "%40s -> %90s" % (input_file, output_file)
 # this works now
 open(output_file, "w")

pipeline_run(verbose=0)

Code for regex() Zoo example

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])
@originate(
 # List of animals and plants
 ["tiger/mammals.wild.animals",
 "lion/mammals.wild.animals",
 "lion/mammals.handreared.animals",
 "dog/mammals.tame.animals",
 "dog/mammals.wild.animals",
 "crocodile/reptiles.wild.animals",
 "rose/flowering.handreared.plants"])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

create directories for each clade
@mkdir(create_initial_files, # Input
 regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
 r"\g<clade>") # new_directory
Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input
 regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
 r"\1\g<clade>/\g<tame>.\2.food", # Replacement
 r"\1\g<clade>", # new_directory
 r"\2", # animal_name
 "\g<tame>") # tameness
def feed(input_file, output_file, new_directory, animal_name, tameness):
 print "%40s -> %90s" % (input_file, output_file)
 # this works now
 open(output_file, "w")

pipeline_run(verbose=0)

Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions

See also

	Manual Table of Contents

	Back to |new_manual.checkpointing.chapter_num|: Interrupted Pipelines and Exceptions

Code for the “Interrupting tasks” example

from ruffus import *

from ruffus import *
import sys, time

create initial files
@originate(['job1.start'])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

#---
#
long task to interrupt
#
@transform(create_initial_files, suffix(".start"), ".output")
def long_task(input_files, output_file):
 with open(output_file, "w") as ff:
 ff.write("Unfinished...")
 # sleep for 2 seconds here so you can interrupt me
 sys.stderr.write("Job started. Press ^C to interrupt me now...\n")
 time.sleep(2)
 ff.write("\nFinished")
 sys.stderr.write("Job completed.\n")

Run
pipeline_run([long_task])

Chapter 12: Python Code for Splitting up large tasks / files with @split

See also

	Manual Table of Contents

	@split syntax in detail

	Back to Chapter 12: Splitting up large tasks / files with @split

Splitting large jobs

from ruffus import *

NUMBER_OF_RANDOMS = 10000
CHUNK_SIZE = 1000

import random, os, glob

#---
#
Create random numbers
#
@originate("random_numbers.list")
def create_random_numbers(output_file_name):
 f = open(output_file_name, "w")
 for i in range(NUMBER_OF_RANDOMS):
 f.write("%g\n" % (random.random() * 100.0))

#---
#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):
 """
 splits random numbers file into xxx files of chunk_size each
 """
 #
 # clean up any files from previous runs
 #
 #for ff in glob.glob("*.chunks"):
 for ff in input_file_names:
 os.unlink(ff)
 #
 #
 # create new file every chunk_size lines and
 # copy each line into current file
 #
 output_file = None
 cnt_files = 0
 for input_file_name in input_file_names:
 for i, line in enumerate(open(input_file_name)):
 if i % CHUNK_SIZE == 0:
 cnt_files += 1
 output_file = open("%d.chunks" % cnt_files, "w")
 output_file.write(line)

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):
 output = open(output_file_name, "w")
 sum_squared, sum = [0.0, 0.0]
 cnt_values = 0
 for line in open(input_file_name):
 cnt_values += 1
 val = float(line.rstrip())
 sum_squared += val * val
 sum += val
 output.write("%s\n%s\n%d\n" % (repr(sum_squared), repr(sum), cnt_values))

#---
#
Run
#
pipeline_run()

Resulting Output

>>> pipeline_run()
 Job = [None -> random_numbers.list] completed
Completed Task = create_random_numbers
 Job = [[random_numbers.list] -> *.chunks] completed
Completed Task = split_problem
 Job = [1.chunks -> 1.sums] completed
 Job = [10.chunks -> 10.sums] completed
 Job = [2.chunks -> 2.sums] completed
 Job = [3.chunks -> 3.sums] completed
 Job = [4.chunks -> 4.sums] completed
 Job = [5.chunks -> 5.sums] completed
 Job = [6.chunks -> 6.sums] completed
 Job = [7.chunks -> 7.sums] completed
 Job = [8.chunks -> 8.sums] completed
 Job = [9.chunks -> 9.sums] completed
Completed Task = sum_of_squares

Chapter 13: Python Code for @merge multiple input into a single result

See also

	Manual Table of Contents

	@merge syntax in detail

	Back to Chapter 13: Splitting up large tasks / files with @merge

Splitting large jobs

from ruffus import *

NUMBER_OF_RANDOMS = 10000
CHUNK_SIZE = 1000

import random, os, glob

#---
#
Create random numbers
#
@originate("random_numbers.list")
def create_random_numbers(output_file_name):
 f = open(output_file_name, "w")
 for i in range(NUMBER_OF_RANDOMS):
 f.write("%g\n" % (random.random() * 100.0))

#---
#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):
 """
 splits random numbers file into xxx files of chunk_size each
 """
 #
 # clean up any files from previous runs
 #
 #for ff in glob.glob("*.chunks"):
 for ff in input_file_names:
 os.unlink(ff)
 #
 #
 # create new file every chunk_size lines and
 # copy each line into current file
 #
 output_file = None
 cnt_files = 0
 for input_file_name in input_file_names:
 for i, line in enumerate(open(input_file_name)):
 if i % CHUNK_SIZE == 0:
 cnt_files += 1
 output_file = open("%d.chunks" % cnt_files, "w")
 output_file.write(line)

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):
 output = open(output_file_name, "w")
 sum_squared, sum = [0.0, 0.0]
 cnt_values = 0
 for line in open(input_file_name):
 cnt_values += 1
 val = float(line.rstrip())
 sum_squared += val * val
 sum += val
 output.write("%s\n%s\n%d\n" % (repr(sum_squared), repr(sum), cnt_values))

#---
#
Calculate variance from sums
#
@merge(sum_of_squares, "variance.result")
def calculate_variance (input_file_names, output_file_name):
 """
 Calculate variance naively
 """
 #
 # initialise variables
 #
 all_sum_squared = 0.0
 all_sum = 0.0
 all_cnt_values = 0.0
 #
 # added up all the sum_squared, and sum and cnt_values from all the chunks
 #
 for input_file_name in input_file_names:
 sum_squared, sum, cnt_values = map(float, open(input_file_name).readlines())
 all_sum_squared += sum_squared
 all_sum += sum
 all_cnt_values += cnt_values
 all_mean = all_sum / all_cnt_values
 variance = (all_sum_squared - all_sum * all_mean)/(all_cnt_values)
 #
 # print output
 #
 open(output_file_name, "w").write("%s\n" % variance)

#---
#
Run
#
pipeline_run()

Resulting Output

>>> pipeline_run()
 Job = [None -> random_numbers.list] completed
Completed Task = create_random_numbers
 Job = [[random_numbers.list] -> *.chunks] completed
Completed Task = split_problem
 Job = [1.chunks -> 1.sums] completed
 Job = [10.chunks -> 10.sums] completed
 Job = [2.chunks -> 2.sums] completed
 Job = [3.chunks -> 3.sums] completed
 Job = [4.chunks -> 4.sums] completed
 Job = [5.chunks -> 5.sums] completed
 Job = [6.chunks -> 6.sums] completed
 Job = [7.chunks -> 7.sums] completed
 Job = [8.chunks -> 8.sums] completed
 Job = [9.chunks -> 9.sums] completed
Completed Task = sum_of_squares
 Job = [[1.sums, 10.sums, 2.sums, 3.sums, 4.sums, 5.sums, 6.sums, 7.sums, 8.sums, 9.sums] -> variance.result] completed
Completed Task = calculate_variance

Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters

See also

	Manual Table of Contents

	@jobs_limit syntax

	pipeline_run() syntax

	drmaa_wrapper.run_job() syntax

	Back to Chapter 14: Multiprocessing, drmaa and Computation Clusters

@jobs_limit

	First 2 tasks are constrained to a parallelism of 3 shared jobs at a time

	Final task is constrained to a parallelism of 5 jobs at a time

	The entire pipeline is constrained to a (theoretical) parallelism of 10 jobs at a time

from ruffus import *
import time

make list of 10 files
@split(None, "*stage1")
def make_files(input_files, output_files):
 for i in range(10):
 if i < 5:
 open("%d.small_stage1" % i, "w")
 else:
 open("%d.big_stage1" % i, "w")

@jobs_limit(3, "ftp_download_limit")
@transform(make_files, suffix(".small_stage1"), ".stage2")
def stage1_small(input_file, output_file):
 print "FTP downloading %s ->Start" % input_file
 time.sleep(2)
 open(output_file, "w")
 print "FTP downloading %s ->Finished" % input_file

@jobs_limit(3, "ftp_download_limit")
@transform(make_files, suffix(".big_stage1"), ".stage2")
def stage1_big(input_file, output_file):
 print "FTP downloading %s ->Start" % input_file
 time.sleep(2)
 open(output_file, "w")
 print "FTP downloading %s ->Finished" % input_file

@jobs_limit(5)
@transform([stage1_small, stage1_big], suffix(".stage2"), ".stage3")
def stage2(input_file, output_file):
 print "Processing stage2 %s ->Start" % input_file
 time.sleep(2)
 open(output_file, "w")
 print "Processing stage2 %s ->Finished" % input_file

pipeline_run(multiprocess = 10, verbose = 0)

Giving:

>>> pipeline_run(multiprocess = 10, verbose = 0)

>>> # 3 jobs at a time, interleaved
FTP downloading 5.big_stage1 ->Start
FTP downloading 6.big_stage1 ->Start
FTP downloading 7.big_stage1 ->Start
FTP downloading 5.big_stage1 ->Finished
FTP downloading 8.big_stage1 ->Start
FTP downloading 6.big_stage1 ->Finished
FTP downloading 9.big_stage1 ->Start
FTP downloading 7.big_stage1 ->Finished
FTP downloading 0.small_stage1 ->Start
FTP downloading 8.big_stage1 ->Finished
FTP downloading 1.small_stage1 ->Start
FTP downloading 9.big_stage1 ->Finished
FTP downloading 2.small_stage1 ->Start
FTP downloading 0.small_stage1 ->Finished
FTP downloading 3.small_stage1 ->Start
FTP downloading 1.small_stage1 ->Finished
FTP downloading 4.small_stage1 ->Start
FTP downloading 2.small_stage1 ->Finished
FTP downloading 3.small_stage1 ->Finished
FTP downloading 4.small_stage1 ->Finished

>>> # 5 jobs at a time, interleaved
Processing stage2 0.stage2 ->Start
Processing stage2 1.stage2 ->Start
Processing stage2 2.stage2 ->Start
Processing stage2 3.stage2 ->Start
Processing stage2 4.stage2 ->Start
Processing stage2 0.stage2 ->Finished
Processing stage2 5.stage2 ->Start
Processing stage2 1.stage2 ->Finished
Processing stage2 6.stage2 ->Start
Processing stage2 2.stage2 ->Finished
Processing stage2 4.stage2 ->Finished
Processing stage2 7.stage2 ->Start
Processing stage2 8.stage2 ->Start
Processing stage2 3.stage2 ->Finished
Processing stage2 9.stage2 ->Start
Processing stage2 5.stage2 ->Finished
Processing stage2 7.stage2 ->Finished
Processing stage2 6.stage2 ->Finished
Processing stage2 8.stage2 ->Finished
Processing stage2 9.stage2 ->Finished

Using ruffus.drmaa_wrapper

#!/usr/bin/python
job_queue_name = "YOUR_QUEUE_NAME_GOES_HERE"
job_other_options = "-P YOUR_PROJECT_NAME_GOES_HERE"

from ruffus import *
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?')

options = parser.parse_args()

logger which can be passed to multiprocessing ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

@originate(["1.chromosome", "X.chromosome"],
 logger, logger_mutex)
def create_test_files(output_file):
 try:
 stdout_res, stderr_res = "",""
 job_queue_name, job_other_options = get_queue_options()

 #
 # ruffus.drmaa_wrapper.run_job
 #
 stdout_res, stderr_res = run_job(cmd_str = "touch " + output_file,
 job_name = job_name,
 logger = logger,
 drmaa_session = drmaa_session,
 run_locally = options.local_run,
 job_queue_name = job_queue_name,
 job_other_options = job_other_options)

 # relay all the stdout, stderr, drmaa output to diagnose failures
 except error_drmaa_job as err:
 raise Exception("\n".join(map(str,
 "Failed to run:"
 cmd,
 err,
 stdout_res,
 stderr_res)))

if __name__ == '__main__':
 cmdline.run (options, multithread = options.jobs)
 # cleanup drmaa
 drmaa_session.exit()

Chapter 15: Python Code for Logging progress through a pipeline

See also

	Manual Table of Contents

	Back to Chapter 15: Logging progress through a pipeline

Rotating set of file logs

import logging
import logging.handlers

LOG_FILENAME = '/tmp/ruffus.log'

Set up a specific logger with our desired output level
logger = logging.getLogger('My_Ruffus_logger')
logger.setLevel(logging.DEBUG)

Rotate a set of 5 log files every 2kb
handler = logging.handlers.RotatingFileHandler(
 LOG_FILENAME, maxBytes=2000, backupCount=5)

Add the log message handler to the logger
logger.addHandler(handler)

Ruffus pipeline
from ruffus import *

Start with some initial data file of yours...
initial_file = "job1.input"
open(initial_file, "w")

@transform(initial_file,
 suffix(".input"),
 ".output1"),
def first_task(input_file, output_file):
 "Some detailed description"
 pass

use our custom logging object
pipeline_run(logger=logger)
print open("/tmp/ruffus.log").read()

Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate

See also

	Manual Table of Contents

	@jobs_limit syntax

	pipeline_run() syntax

	drmaa_wrapper.run_job() syntax

	Back to Chapter 16: :ref:`@subdivide tasks to run efficiently and regroup with @collate

@subdivide and regroup with @collate example

from ruffus import *
import os, random, sys

Create files a random number of lines
@originate(["a.start",
 "b.start",
 "c.start"])
def create_test_files(output_file):
 cnt_lines = random.randint(1,3) * 2
 with open(output_file, "w") as oo:
 for ii in range(cnt_lines):
 oo.write("data item = %d\n" % ii)
 print " %s has %d lines" % (output_file, cnt_lines)

#
subdivide the input files into NNN fragment files of 2 lines each
#
@subdivide(create_test_files,
 formatter(),
 "{path[0]}/{basename[0]}.*.fragment",
 "{path[0]}/{basename[0]}")
def subdivide_files(input_file, output_files, output_file_name_stem):
 #
 # cleanup any previous results
 #
 for oo in output_files:
 os.unlink(oo)
 #
 # Output files contain two lines each
 # (new output files every even line)
 #
 cnt_output_files = 0
 for ii, line in enumerate(open(input_file)):
 if ii % 2 == 0:
 cnt_output_files += 1
 output_file_name = "%s.%d.fragment" % (output_file_name_stem, cnt_output_files)
 output_file = open(output_file_name, "w")
 print " Subdivide %s -> %s" % (input_file, output_file_name)
 output_file.write(line)

#
Analyse each fragment independently
#
@transform(subdivide_files, suffix(".fragment"), ".analysed")
def analyse_fragments(input_file, output_file):
 print " Analysing %s -> %s" % (input_file, output_file)
 with open(output_file, "w") as oo:
 for line in open(input_file):
 oo.write("analysed " + line)

#
Group results using original names
#
@collate(analyse_fragments,

 # split file name into [abc].NUMBER.analysed
 formatter("/(?P<NAME>[abc]+)\.\d+\.analysed$"),

 "{path[0]}/{NAME[0]}.final_result")
def recombine_analyses(input_file_names, output_file):
 with open(output_file, "w") as oo:
 for input_file in input_file_names:
 print " Recombine %s -> %s" % (input_file, output_file)
 for line in open(input_file):
 oo.write(line)

#pipeline_printout(sys.stdout, verbose = 3)

pipeline_run(verbose = 1)

Results in

>>> pipeline_run(verbose = 1)

 a.start has 2 lines
 Job = [None -> a.start] completed
 b.start has 6 lines
 Job = [None -> b.start] completed
 c.start has 6 lines
 Job = [None -> c.start] completed
Completed Task = create_test_files

 Subdivide a.start -> /home/lg/temp/a.1.fragment
 Job = [a.start -> a.*.fragment, a] completed
 Subdivide b.start -> /home/lg/temp/b.1.fragment
 Subdivide b.start -> /home/lg/temp/b.2.fragment
 Subdivide b.start -> /home/lg/temp/b.3.fragment
 Job = [b.start -> b.*.fragment, b] completed
 Subdivide c.start -> /home/lg/temp/c.1.fragment
 Subdivide c.start -> /home/lg/temp/c.2.fragment
 Subdivide c.start -> /home/lg/temp/c.3.fragment
 Job = [c.start -> c.*.fragment, c] completed
Completed Task = subdivide_files

 Analysing /home/lg/temp/a.1.fragment -> /home/lg/temp/a.1.analysed
 Job = [a.1.fragment -> a.1.analysed] completed
 Analysing /home/lg/temp/b.1.fragment -> /home/lg/temp/b.1.analysed
 Job = [b.1.fragment -> b.1.analysed] completed
 Analysing /home/lg/temp/b.2.fragment -> /home/lg/temp/b.2.analysed
 Job = [b.2.fragment -> b.2.analysed] completed
 Analysing /home/lg/temp/b.3.fragment -> /home/lg/temp/b.3.analysed
 Job = [b.3.fragment -> b.3.analysed] completed
 Analysing /home/lg/temp/c.1.fragment -> /home/lg/temp/c.1.analysed
 Job = [c.1.fragment -> c.1.analysed] completed
 Analysing /home/lg/temp/c.2.fragment -> /home/lg/temp/c.2.analysed
 Job = [c.2.fragment -> c.2.analysed] completed
 Analysing /home/lg/temp/c.3.fragment -> /home/lg/temp/c.3.analysed
 Job = [c.3.fragment -> c.3.analysed] completed
Completed Task = analyse_fragments

 Recombine /home/lg/temp/a.1.analysed -> /home/lg/temp/a.final_result
 Job = [[a.1.analysed] -> a.final_result] completed
 Recombine /home/lg/temp/b.1.analysed -> /home/lg/temp/b.final_result
 Recombine /home/lg/temp/b.2.analysed -> /home/lg/temp/b.final_result
 Recombine /home/lg/temp/b.3.analysed -> /home/lg/temp/b.final_result
 Job = [[b.1.analysed, b.2.analysed, b.3.analysed] -> b.final_result] completed
 Recombine /home/lg/temp/c.1.analysed -> /home/lg/temp/c.final_result
 Recombine /home/lg/temp/c.2.analysed -> /home/lg/temp/c.final_result
 Recombine /home/lg/temp/c.3.analysed -> /home/lg/temp/c.final_result
 Job = [[c.1.analysed, c.2.analysed, c.3.analysed] -> c.final_result] completed
Completed Task = recombine_analyses

Chapter 17: Python Code for @combinations, @permutations and all versus all @product

See also

	Manual Table of Contents

	@combinations_with_replacement

	@combinations

	@permutations

	@product

	Back to Chapter 17: Preparing directories for output with @combinatorics()

Example code for @product

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):
 with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):
 with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
 ['y.1_start', 'y.2_start']])
def create_initial_files_xy(output_file):
 with open(output_file, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input
 formatter("(.start)$"), # match input file set # 1

 create_initial_files_pq, # Input
 formatter("(.start)$"), # match input file set # 2

 create_initial_files_xy, # Input
 formatter("(.start)$"), # match input file set # 3

 "{path[0][0]}/" # Output Replacement string
 "{basename[0][0]}_vs_" #
 "{basename[1][0]}_vs_" #
 "{basename[2][0]}.product", #

 "{path[0][0]}", # Extra parameter: path for 1st set of files, 1st file name

 ["{basename[0][0]}", # Extra parameter: basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def product_task(input_file, output_parameter, shared_path, basenames):
 print "# basenames = ", " ".join(basenames)
 print "input_parameter = ", input_file
 print "output_parameter = ", output_parameter, "\n"

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

Example code for @permutations

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.permutations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
])
def permutations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

Example code for @combinations

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 3 at a time
 3,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}_vs_"
 "{basename[2][1]}.combinations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def combinations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

Example code for @combinations_with_replacement

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.combinations_with_replacement",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}", # 2rd
])
def combinations_with_replacement_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()

See also

	Manual Table of Contents

	inputs() syntax

	add_inputs() syntax

	Back to Chapter 20: Manipulating task inputs via string substitution

Example code for adding additional input prerequisites per job with add_inputs()

1. Example: compiling c++ code

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:
 open(source_file, "w")

from ruffus import *

@transform(source_files, suffix(".cpp"), ".o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [hasty.cpp -> hasty.o] completed
 Job = [messy.cpp -> messy.o] completed
 Job = [tasty.cpp -> tasty.o] completed
Completed Task = compile

2. Example: Adding a common header file with add_inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:
 open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files, suffix(".cpp"),
 # add header to the input of every job
 add_inputs("universal.h"),
 ".o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [[hasty.cpp, universal.h] -> hasty.o] completed
 Job = [[messy.cpp, universal.h] -> messy.o] completed
 Job = [[tasty.cpp, universal.h] -> tasty.o] completed
Completed Task = compile

3. Example: Additional Input can be tasks

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:
 open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):
 open(output_file, "w")

@transform(source_files, suffix(".cpp"),
 # add header to the input of every job
 add_inputs("universal.h",
 # add result of task create_matching_headers to the input of every job
 create_matching_headers),
 ".o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [hasty.cpp -> hasty.h] completed
 Job = [messy.cpp -> messy.h] completed
 Job = [tasty.cpp -> tasty.h] completed
Completed Task = create_matching_headers
 Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
 Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
 Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed
Completed Task = compile

4. Example: Add corresponding files using add_inputs() with formatter or regex

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
header_files = ["hasty.h", "tasty.h", "messy.h"]
for source_file in source_files + header_files:
 open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files,
 formatter(".cpp$"),
 # corresponding header for each source file
 add_inputs("{basename[0]}.h",
 # add header to the input of every job
 "universal.h"),
 "{basename[0]}.o")
def compile(input_filename, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [[hasty.cpp, hasty.h, universal.h] -> hasty.o] completed
 Job = [[messy.cpp, messy.h, universal.h] -> messy.o] completed
 Job = [[tasty.cpp, tasty.h, universal.h] -> tasty.o] completed
Completed Task = compile

Example code for replacing all input parameters with inputs()

5. Example: Running matching python scripts using inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
python_files = ["hasty.py", "tasty.py", "messy.py"]
for source_file in source_files + python_files:
 open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files,
 formatter(".cpp$"),
 # corresponding python file for each source file
 inputs("{basename[0]}.py"),

 "{basename[0]}.results")
def run_corresponding_python(input_filenames, output_file):
 open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
 Job = [hasty.py -> hasty.results] completed
 Job = [messy.py -> messy.results] completed
 Job = [tasty.py -> tasty.results] completed
Completed Task = run_corresponding_python

Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files

See also

	Manual Table of Contents

	@files on-the-fly syntax in detail

	Back to Chapter 21: Generating parameters on the fly

Introduction

This script takes N pairs of input file pairs (with the suffices .gene and .gwas)

and runs them against M sets of simulation data (with the suffix .simulation)

A summary per input file pair is then produced

In pseudo-code:

STEP_1:

for n_file in NNN_pairs_of_input_files:
 for m_file in MMM_simulation_data:

 [n_file.gene,
 n_file.gwas,
 m_file.simulation] -> n_file.m_file.simulation_res

STEP_2:

for n_file in NNN_pairs_of_input_files:

 n_file.*.simulation_res -> n_file.mean

n = CNT_GENE_GWAS_FILES

m = CNT_SIMULATION_FILES

Code

from ruffus import *
import os

#888

constants

#888
working_dir = "temp_NxM"
simulation_data_dir = os.path.join(working_dir, "simulation")
gene_data_dir = os.path.join(working_dir, "gene")
CNT_GENE_GWAS_FILES = 2
CNT_SIMULATION_FILES = 3

#888

imports

#888
import os, sys
from itertools import izip
import glob
#888

Functions

#888

#___
#
get gene gwas file pairs
#
#___
def get_gene_gwas_file_pairs():
 """
 Helper function to get all *.gene, *.gwas from the direction specified
 in --gene_data_dir

 Returns
 file pairs with both .gene and .gwas extensions,
 corresponding roots (no extension) of each file
 """
 gene_files = glob.glob(os.path.join(gene_data_dir, "*.gene"))
 gwas_files = glob.glob(os.path.join(gene_data_dir, "*.gwas"))
 #
 common_roots = set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gene_files))
 common_roots &=set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gwas_files))
 common_roots = list(common_roots)
 #
 p = os.path; g_dir = gene_data_dir
 file_pairs = [[p.join(g_dir, x + ".gene"), p.join(g_dir, x + ".gwas")] for x in common_roots]
 return file_pairs, common_roots

#___
#
get simulation files
#
#___
def get_simulation_files():
 """
 Helper function to get all *.simulation from the direction specified
 in --simulation_data_dir
 Returns
 file with .simulation extensions,
 corresponding roots (no extension) of each file
 """
 simulation_files = glob.glob(os.path.join(simulation_data_dir, "*.simulation"))
 simulation_roots =map(lambda x: os.path.splitext(os.path.split(x)[1])[0], simulation_files)
 return simulation_files, simulation_roots

#888

Main logic

#888

#___
#
setup_simulation_data
#
#___

#
mkdir: makes sure output directories exist before task
#
@follows(mkdir(gene_data_dir, simulation_data_dir))
def setup_simulation_data ():
 """
 create simulation files
 """
 for i in range(CNT_GENE_GWAS_FILES):
 open(os.path.join(gene_data_dir, "%03d.gene" % i), "w")
 open(os.path.join(gene_data_dir, "%03d.gwas" % i), "w")
 #
 # gene files without corresponding gwas and vice versa
 open(os.path.join(gene_data_dir, "orphan1.gene"), "w")
 open(os.path.join(gene_data_dir, "orphan2.gwas"), "w")
 open(os.path.join(gene_data_dir, "orphan3.gwas"), "w")
 #
 for i in range(CNT_SIMULATION_FILES):
 open(os.path.join(simulation_data_dir, "%03d.simulation" % i), "w")

#___
#
cleanup_simulation_data
#
#___
def try_rmdir (d):
 if os.path.exists(d):
 try:
 os.rmdir(d)
 except OSError:
 sys.stderr.write("Warning:\t%s is not empty and will not be removed.\n" % d)

def cleanup_simulation_data ():
 """
 cleanup files
 """
 sys.stderr.write("Cleanup working directory and simulation files.\n")
 #
 # cleanup gene and gwas files
 #
 for f in glob.glob(os.path.join(gene_data_dir, "*.gene")):
 os.unlink(f)
 for f in glob.glob(os.path.join(gene_data_dir, "*.gwas")):
 os.unlink(f)
 try_rmdir(gene_data_dir)
 #
 # cleanup simulation
 #
 for f in glob.glob(os.path.join(simulation_data_dir, "*.simulation")):
 os.unlink(f)
 try_rmdir(simulation_data_dir)
 #
 # cleanup working_dir
 #
 for f in glob.glob(os.path.join(working_dir, "simulation_results", "*.simulation_res")):
 os.unlink(f)
 try_rmdir(os.path.join(working_dir, "simulation_results"))
 #
 for f in glob.glob(os.path.join(working_dir, "*.mean")):
 os.unlink(f)
 try_rmdir(working_dir)

#___
#
Step 1:
#
for n_file in NNN_pairs_of_input_files:
for m_file in MMM_simulation_data:
#
[n_file.gene,
n_file.gwas,
m_file.simulation] -> working_dir/n_file.m_file.simulation_res
#
#___
def generate_simulation_params ():
 """
 Custom function to generate
 file names for gene/gwas simulation study
 """
 simulation_files, simulation_file_roots = get_simulation_files()
 gene_gwas_file_pairs, gene_gwas_file_roots = get_gene_gwas_file_pairs()
 #
 for sim_file, sim_file_root in izip(simulation_files, simulation_file_roots):
 for (gene, gwas), gene_file_root in izip(gene_gwas_file_pairs, gene_gwas_file_roots):
 #
 result_file = "%s.%s.simulation_res" % (gene_file_root, sim_file_root)
 result_file_path = os.path.join(working_dir, "simulation_results", result_file)
 #
 yield [gene, gwas, sim_file], result_file_path, gene_file_root, sim_file_root, result_file

#
mkdir: makes sure output directories exist before task
#
@follows(mkdir(working_dir, os.path.join(working_dir, "simulation_results")))
@files(generate_simulation_params)
def gwas_simulation(input_files, result_file_path, gene_file_root, sim_file_root, result_file):
 """
 Dummy calculation of gene gwas vs simulation data
 Normally runs in parallel on a computational cluster
 """
 (gene_file,
 gwas_file,
 simulation_data_file) = input_files
 #
 simulation_res_file = open(result_file_path, "w")
 simulation_res_file.write("%s + %s -> %s\n" % (gene_file_root, sim_file_root, result_file))

#___
#
Step 2:
#
Statistical summary per gene/gwas file pair
#
for n_file in NNN_pairs_of_input_files:
working_dir/simulation_results/n.*.simulation_res
-> working_dir/n.mean
#
#___

@collate(gwas_simulation, regex(r"simulation_results/(\d+).\d+.simulation_res"), r"\1.mean")
@posttask(lambda : sys.stdout.write("\nOK\n"))
def statistical_summary (result_files, summary_file):
 """
 Simulate statistical summary
 """
 summary_file = open(summary_file, "w")
 for f in result_files:
 summary_file.write(open(f).read())

pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)

uncomment to printout flowchar
#
pipeline_printout(sys.stdout, [statistical_summary], verbose=2)
graph_printout ("flowchart.jpg", "jpg", [statistical_summary])
#

cleanup_simulation_data ()

Resulting Output

>>> pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
 Make directories [temp_NxM/gene, temp_NxM/simulation] completed
Completed Task = setup_simulation_data_mkdir_1
 Job completed
Completed Task = setup_simulation_data

>>> pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)
 Make directories [temp_NxM, temp_NxM/simulation_results] completed
Completed Task = gwas_simulation_mkdir_1
 Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/001.000.simulation_res, 001, 000, 001.000.simulation_res] completed
 Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/000.000.simulation_res, 000, 000, 000.000.simulation_res] completed
 Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/001.001.simulation_res, 001, 001, 001.001.simulation_res] completed
 Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/000.001.simulation_res, 000, 001, 000.001.simulation_res] completed
 Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/000.002.simulation_res, 000, 002, 000.002.simulation_res] completed
 Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/001.002.simulation_res, 001, 002, 001.002.simulation_res] completed
Completed Task = gwas_simulation
 Job = [[temp_NxM/simulation_results/000.000.simulation_res, temp_NxM/simulation_results/000.001.simulation_res, temp_NxM/simulation_results/000.002.simulation_res] -> temp_NxM/000.mean] completed
 Job = [[temp_NxM/simulation_results/001.000.simulation_res, temp_NxM/simulation_results/001.001.simulation_res, temp_NxM/simulation_results/001.002.simulation_res] -> temp_NxM/001.mean] completed

Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(…)

See also

	Manual Table of Contents

	pipeline_printout_graph(…)

	Download code

	Back to Flowchart colours

This example shows how flowchart colours can be customised.

Code

#!/usr/bin/env python
"""

 play_with_colours.py
 [--log_file PATH]
 [--verbose]

"""

##
#
play_with_colours.py
#
#
Copyright (c) 7/13/2010 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###

import sys, os

#888

options

#888

from optparse import OptionParser
import StringIO

parser = OptionParser(version="%play_with_colours 1.0",
 usage = "\n\n play_with_colours "
 "--flowchart FILE [options] "
 "[--colour_scheme_index INT] "
 "[--key_legend_in_graph]")

#
pipeline
#
parser.add_option("--flowchart", dest="flowchart",
 metavar="FILE",
 type="string",
 help="Don't actually run any commands; just print the pipeline "
 "as a flowchart.")
parser.add_option("--colour_scheme_index", dest="colour_scheme_index",
 metavar="INTEGER",
 type="int",
 help="Index of colour scheme for flow chart.")
parser.add_option("--key_legend_in_graph", dest="key_legend_in_graph",
 action="store_true", default=False,
 help="Print out legend and key for dependency graph.")

(options, remaining_args) = parser.parse_args()
if not options.flowchart:
 raise Exception("Missing mandatory parameter: --flowchart.\n")

#888

imports

#888

from ruffus import *
from ruffus.ruffus_exceptions import JobSignalledBreak

#888

Pipeline

#888

#
up to date tasks
#
@check_if_uptodate (lambda : (False, ""))
def Up_to_date_task1(infile, outfile):
 pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task1)
def Up_to_date_task2(infile, outfile):
 pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task2)
def Up_to_date_task3(infile, outfile):
 pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task3)
def Up_to_date_final_target(infile, outfile):
 pass

#
Explicitly specified
#
@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task1)
def Explicitly_specified_task(infile, outfile):
 pass

#
Tasks to run
#
@follows(Explicitly_specified_task)
def Task_to_run1(infile, outfile):
 pass

@follows(Task_to_run1)
def Task_to_run2(infile, outfile):
 pass

@follows(Task_to_run2)
def Task_to_run3(infile, outfile):
 pass

@check_if_uptodate (lambda : (False, ""))
@follows(Task_to_run2)
def Up_to_date_task_forced_to_rerun(infile, outfile):
 pass

#
Final target
#
@follows(Up_to_date_task_forced_to_rerun, Task_to_run3)
def Final_target(infile, outfile):
 pass

#
Ignored downstream
#
@follows(Final_target)
def Downstream_task1_ignored(infile, outfile):
 pass

@follows(Final_target)
def Downstream_task2_ignored(infile, outfile):
 pass

#888

Main logic

#888
from collections import defaultdict
custom_flow_chart_colour_scheme = defaultdict(dict)

#
Base chart on this overall colour scheme index
#
custom_flow_chart_colour_scheme["colour_scheme_index"] = options.colour_scheme_index

#
Overriding colours
#
if options.colour_scheme_index is None:
 custom_flow_chart_colour_scheme["Vicious cycle"]["linecolor"] = '"#FF3232"'
 custom_flow_chart_colour_scheme["Pipeline"]["fontcolor"] = '"#FF3232"'
 custom_flow_chart_colour_scheme["Key"]["fontcolor"] = "black"
 custom_flow_chart_colour_scheme["Key"]["fillcolor"] = '"#F6F4F4"'
 custom_flow_chart_colour_scheme["Task to run"]["linecolor"] = '"#0044A0"'
 custom_flow_chart_colour_scheme["Up-to-date"]["linecolor"] = "gray"
 custom_flow_chart_colour_scheme["Final target"]["fillcolor"] = '"#EFA03B"'
 custom_flow_chart_colour_scheme["Final target"]["fontcolor"] = "black"
 custom_flow_chart_colour_scheme["Final target"]["color"] = "black"
 custom_flow_chart_colour_scheme["Final target"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Vicious cycle"]["fillcolor"] = '"#FF3232"'
 custom_flow_chart_colour_scheme["Vicious cycle"]["fontcolor"] = 'white'
 custom_flow_chart_colour_scheme["Vicious cycle"]["color"] = "white"
 custom_flow_chart_colour_scheme["Vicious cycle"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Up-to-date task"]["fillcolor"] = '"#B8CC6E"'
 custom_flow_chart_colour_scheme["Up-to-date task"]["fontcolor"] = '"#006000"'
 custom_flow_chart_colour_scheme["Up-to-date task"]["color"] = '"#006000"'
 custom_flow_chart_colour_scheme["Up-to-date task"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Down stream"]["fillcolor"] = "white"
 custom_flow_chart_colour_scheme["Down stream"]["fontcolor"] = "gray"
 custom_flow_chart_colour_scheme["Down stream"]["color"] = "gray"
 custom_flow_chart_colour_scheme["Down stream"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Explicitly specified task"]["fillcolor"] = "transparent"
 custom_flow_chart_colour_scheme["Explicitly specified task"]["fontcolor"] = "black"
 custom_flow_chart_colour_scheme["Explicitly specified task"]["color"] = "black"
 custom_flow_chart_colour_scheme["Explicitly specified task"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Task to run"]["fillcolor"] = '"#EBF3FF"'
 custom_flow_chart_colour_scheme["Task to run"]["fontcolor"] = '"#0044A0"'
 custom_flow_chart_colour_scheme["Task to run"]["color"] = '"#0044A0"'
 custom_flow_chart_colour_scheme["Task to run"]["dashed"] = 0
 custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["fillcolor"] = 'transparent'
 custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["fontcolor"] = '"#0044A0"'
 custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["color"] = '"#0044A0"'
 custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["dashed"] = 1
 custom_flow_chart_colour_scheme["Up-to-date Final target"]["fillcolor"] = '"#EFA03B"'
 custom_flow_chart_colour_scheme["Up-to-date Final target"]["fontcolor"] = '"#006000"'
 custom_flow_chart_colour_scheme["Up-to-date Final target"]["color"] = '"#006000"'
 custom_flow_chart_colour_scheme["Up-to-date Final target"]["dashed"] = 0

if __name__ == '__main__':
 pipeline_printout_graph (

 open(options.flowchart, "w"),
 # use flowchart file name extension to decide flowchart format
 # e.g. svg, jpg etc.
 os.path.splitext(options.flowchart)[1][1:],

 # final targets
 [Final_target, Up_to_date_final_target],

 # Explicitly specified tasks
 [Explicitly_specified_task],

 # Do we want key legend
 no_key_legend = not options.key_legend_in_graph,

 # Print all the task types whether used or not
 minimal_key_legend = False,

 user_colour_scheme = custom_flow_chart_colour_scheme,
 pipeline_name = "Colour schemes")

Construction of a simple pipeline to run BLAST jobs

Overview

This is a simple example to illustrate the convenience Ruffus
brings to simple tasks in bioinformatics.

	Split a problem into multiple fragments that can be

	Run in parallel giving partial solutions that can be

	Recombined into the complete solution.

The example code runs a ncbi [http://blast.ncbi.nlm.nih.gov/]
blast [http://en.wikipedia.org/wiki/BLAST] search for four sequences
against the human refseq [http://en.wikipedia.org/wiki/RefSeq] protein sequence database.

	Split each of the four sequences into a separate file.

	Run in parallel Blastall on each sequence file

	Recombine the BLAST results by simple concatenation.

In real life,

	BLAST [http://blast.ncbi.nlm.nih.gov/] already provides support for multiprocessing

	Sequence files would be split in much larger chunks, with many sequences

	The jobs would be submitted to large computational farms (in our case, using the SunGrid Engine).

	The High Scoring Pairs (HSPs) would be parsed / filtered / stored in your own formats.

Note

This bioinformatics example is intended to showcase some of the features of Ruffus.

	See the manual to learn about the various features in Ruffus.

Prerequisites

1. Ruffus

To install Ruffus on most systems with python installed:

easy_install -U ruffus

Otherwise, download [http://code.google.com/p/ruffus/downloads/list] Ruffus and run:

tar -xvzf ruffus-xxx.tar.gz
cd ruffus-xxx
./setup install

where xxx is the latest Ruffus version.

2. BLAST

This example assumes that the BLAST [http://blast.ncbi.nlm.nih.gov/] blastall and formatdb executables are
installed and on the search path. Otherwise download from here [http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download].

3. human refseq sequence database

We also need to download the human refseq sequence file and format the ncbi database:

wget ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein.faa.gz
gunzip human.protein.faa.gz

formatdb -i human.protein.faa

4. test sequences

Query sequences in FASTA format can be found in original.fa

Code

The code for this example can be found here and
pasted into the python command shell.

Step 1. Splitting up the query sequences

We want each of our sequences in the query file original.fa to be placed
in a separate files named XXX.segment where XXX = 1 -> the number of sequences.

current_file_index = 0
for line in open("original.fa"):
 # start a new file for each accession line
 if line[0] == '>':
 current_file_index += 1
 current_file = open("%d.segment" % current_file_index, "w")
 current_file.write(line)

To use this in a pipeline, we only need to wrap this in a function, “decorated” with the Ruffus
keyword @split:

[image: ../../_images/examples_bioinformatics_split.jpg]

This indicates that we are splitting up the input file original.fa into however many
*.segment files as it takes.

The pipelined function itself takes two arguments, for the input and output.

We shall see later this simple @split decorator already gives all the benefits of:

	Dependency checking

	Flowchart printing

Step 2. Run BLAST jobs in parallel

Assuming that blast is already installed, sequence matches can be found with this python
code:

os.system("blastall -p blastp -d human.protein.faa -i 1.segment > 1.blastResult")

To pipeline this, we need to simply wrap in a function, decorated with the Ruffus
keyword @transform.

[image: ../../_images/examples_bioinformatics_transform.jpg]

This indicates that we are taking all the output files from the previous splitFasta
operation (*.segment) and @transform-ing each to a new file with the .blastResult
suffix. Each of these transformation operations can run in parallel if specified.

Step 3. Combining BLAST results

	The following python code will concatenate the results together

	output_file = open("final.blast_results", "w")
for i in glob("*.blastResults"):
 output_file.write(open(i).read())

To pipeline this, we need again to decorate with the Ruffus keyword @merge.

[image: ../../_images/examples_bioinformatics_merge.jpg]

This indicates that we are taking all the output files from the previous runBlast
operation (*.blastResults) and @merge-ing them to the new file final.blast_results.

Step 4. Running the pipeline

We can run the completed pipeline using a maximum of 4 parallel processes by calling
pipeline_run :

pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

Though we have only asked Ruffus to run combineBlastResults, it traces all the dependencies
of this task and runs all the necessary parts of the pipeline.

Note

The full code for this example can be found here
suitable for pasting into the python command shell.

The verbose parameter causes the following output to be printed to stderr as the pipeline
runs:

>>> pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)
 Job = [original.fa -> *.segment] completed
Completed Task = splitFasta
 Job = [1.segment -> 1.blastResult] completed
 Job = [3.segment -> 3.blastResult] completed
 Job = [2.segment -> 2.blastResult] completed
 Job = [4.segment -> 4.blastResult] completed
Completed Task = runBlast
 Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult] -> final.blast_results] completed
Completed Task = combineBlastResults

Step 5. Testing dependencies

If we invoked pipeline_run again, nothing
further would happen because the
pipeline is now up-to-date. But what if the pipeline had not run to completion?

We can simulate the failure of one of the blastall jobs by deleting its results:

os.unlink("4.blastResult")

Let us use the pipeline_printout
function to print out the dependencies of the pipeline at a high verbose level which
will show both complete and incomplete jobs:

>>> import sys
>>> pipeline_printout(sys.stdout, [combineBlastResults], verbose = 4)

__
Tasks which are up-to-date:

Task = splitFasta
 "Split sequence file into as many fragments as appropriate depending on the size of
 original_fasta"

__
Tasks which will be run:

Task = runBlast
 "Run blast"
 Job = [4.segment
 ->4.blastResult]
 Job needs update: Missing file 4.blastResult

Task = combineBlastResults
 "Combine blast results"
 Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult]
 ->final.blast_results]
 Job needs update: Missing file 4.blastResult

__

Only the parts of the pipeline which involve the missing BLAST result will be rerun.
We can confirm this by invoking the pipeline.

>>> pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

 Job = [1.segment -> 1.blastResult] unnecessary: already up to date
 Job = [2.segment -> 2.blastResult] unnecessary: already up to date
 Job = [3.segment -> 3.blastResult] unnecessary: already up to date
 Job = [4.segment -> 4.blastResult] completed
Completed Task = runBlast
 Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult] -> final.blast_results] completed
Completed Task = combineBlastResults

What is next?

In the next (short) part,
we shall add some standard (boilerplate) code to
turn this BLAST pipeline into a (slightly more) useful python program.

Part 2: A slightly more practical pipeline to run blasts jobs

Overview

Previously, we had built
a simple pipeline to split up a FASTA file of query sequences so
that these can be matched against a sequence database in parallel.

We shall wrap this code so that

	It is more robust to interruptions

	We can specify the file names on the command line

Step 1. Cleaning up any leftover junk from previous pipeline runs

We split up each of our sequences in the query file original.fa
into a separate files named XXX.segment where XXX is the number of sequences in
the FASTA file.

However, if we start with 6 sequences (giving 1.segment … 6.segment), and we
then edited original.fa
so that only 5 were left, the file 6.segment would still be left
hanging around as an unwanted, extraneous and confusing orphan.

As a general rule, it is a good idea to clean up the results of a previous run in
a @split operation:

@split("original.fa", "*.segment")
def splitFasta (seqFile, segments):

 #
 # Clean up any segment files from previous runs before creating new one
 #
 for i in glob.glob("*.segment"):
 os.unlink(i)

 # code as before...

Step 2. Adding a “flag” file to mark successful completion

When pipelined tasks are interrupted half way through an operation, the output may
only contain part of the results in an incomplete or inconsistent state.
There are three general options to deal with this:

	Catch any interrupting conditions and delete the incomplete output

	Tag successfully completed output with a special marker at the end of the file

	Create an empty “flag” file whose only point is to signal success

Option (3) is the most reliable way and involves the least amount of work in Ruffus.
We add flag files with the suffix .blastSuccess for our parallel BLAST jobs:

@transform(splitFasta, suffix(".segment"), [".blastResult", ".blastSuccess"])
def runBlast(seqFile, output_files):

 blastResultFile, flag_file = output_files

 #
 # Existing code unchanged
 #
 os.system("blastall -p blastp -d human.protein.faa "+
 "-i %s > %s" % (seqFile, blastResultFile))

 #
 # "touch" flag file to indicate success
 #
 open(flag_file, "w")

Step 3. Allowing the script to be invoked on the command line

We allow the query sequence file, as well as the sequence database and end results
to be specified at runtime using the standard python optparse [http://docs.python.org/library/optparse.html] module.
We find this approach to run time arguments generally useful for many Ruffus scripts.
The full code can be viewed here and
downloaded from run_parallel_blast.py.

The different options can be inspected by running the script with the --help or -h
argument.

The following options are useful for developing Ruffus scripts:

--verbose | -v : Print more detailed messages for each additional verbose level.
 E.g. run_parallel_blast --verbose --verbose --verbose ... (or -vvv)

--jobs | -j : Specifies the number of jobs (operations) to run in parallel.

--flowchart FILE : Print flowchart of the pipeline to FILE. Flowchart format
 depends on extension. Alternatives include (".dot", ".jpg",
 "*.svg", "*.png" etc). Formats other than ".dot" require
 the dot program to be installed (http://www.graphviz.org/).

--just_print | -n Only print a trace (description) of the pipeline.
 The level of detail is set by --verbose.

Step 4. Printing out a flowchart for the pipeline

The --flowchart argument results in a call to pipeline_printout_graph(...)
This prints out a flowchart of the pipeline. Valid formats include “.dot”, “.jpg”, “.svg”, “.png”
but all except for the first require the dot program to be installed
(http://www.graphviz.org/).

The state of the pipeline is reflected in the flowchart:

[image: ../../_images/examples_bioinformatics_pipeline.jpg]

Step 5. Errors

Because Ruffus scripts are just normal python functions, you can debug them using
your usual tools, or jump to the offending line(s) even when the pipeline is running in
parallel.

For example, these are the what the error messages would look like if we had mis-spelt blastal.
In run_parallel_blast.py,
python exceptions are raised if the blastall command fails.

Each of the exceptions for the parallel operations are printed out with the
offending lines (line 204), and problems (blastal not found)
highlighted in red.

[image: ../../_images/examples_bioinformatics_error.png]

Step 6. Will it run?

The full code can be viewed here and
downloaded from run_parallel_blast.py.

Ruffus code

import os, sys

exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]
sys.path.insert(0, os.path.abspath(os.path.join(exe_path,"..", "..","..")))

from ruffus import *

original_fasta = "original.fa"
database_file = "human.protein.faa"

@split(original_fasta, "*.segment")
def splitFasta (seqFile, segments):
 """Split sequence file into
 as many fragments as appropriate
 depending on the size of original_fasta"""
 current_file_index = 0
 for line in open(original_fasta):
 #
 # start a new file for each accession line
 #
 if line[0] == '>':
 current_file_index += 1
 current_file = open("%d.segment" % current_file_index, "w")
 current_file.write(line)

@transform(splitFasta, suffix(".segment"), ".blastResult")
def runBlast(seqFile, blastResultFile):
 """Run blast"""
 os.system("blastall -p blastp -d %s -i %s > %s" %
 (database_file, seqFile, blastResultFile))

@merge(runBlast, "final.blast_results")
def combineBlastResults (blastResultFiles, combinedBlastResultFile):
 """Combine blast results"""
 output_file = open(combinedBlastResultFile, "w")
 for i in blastResultFiles:
 output_file.write(open(i).read())

pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

#
Simulate interuption of the pipeline by
deleting the output of one of the BLAST jobs
#
os.unlink("4.blastResult")

pipeline_printout(sys.stdout, [combineBlastResults], verbose = 4)

#
Re-running the pipeline
#
pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

Ruffus code

#!/usr/bin/env python
"""

 run_parallel_blast.py
 [--log_file PATH]
 [--quiet]

"""

##
#
run_parallel_blast
#
#
Copyright (c) 4/21/2010 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###
import os, sys
exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]
sys.path.insert(0,os.path.abspath(os.path.join(exe_path,"..", "..")))

#888

options

#888

from optparse import OptionParser
import sys, os

exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]

parser = OptionParser(version="%prog 1.0", usage = "\n\n %prog --input_file QUERY_FASTA --database_file FASTA_DATABASE [more_options]")
parser.add_option("-i", "--input_file", dest="input_file",
 metavar="FILE",
 type="string",
 help="Name and path of query sequence file in FASTA format. ")
parser.add_option("-d", "--database_file", dest="database_file",
 metavar="FILE",
 type="string",
 help="Name and path of FASTA database to search. ")
parser.add_option("--result_file", dest="result_file",
 metavar="FILE",
 type="string",
 default="final.blast_results",
 help="Name and path of where the files should end up. ")
parser.add_option("-t", "--temp_directory", dest="temp_directory",
 metavar="PATH",
 type="string",
 default="tmp",
 help="Name and path of temporary directory where calculations "
 "should take place. ")

#
general options: verbosity / logging
#
parser.add_option("-v", "--verbose", dest = "verbose",
 action="count", default=0,
 help="Print more detailed messages for each additional verbose level."
 " E.g. run_parallel_blast --verbose --verbose --verbose ... (or -vvv)")

#
pipeline
#
parser.add_option("-j", "--jobs", dest="jobs",
 default=1,
 metavar="jobs",
 type="int",
 help="Specifies the number of jobs (operations) to run in parallel.")
parser.add_option("--flowchart", dest="flowchart",
 metavar="FILE",
 type="string",
 help="Print flowchart of the pipeline to FILE. Flowchart format "
 "depends on extension. Alternatives include ('.dot', '.jpg', "
 "'*.svg', '*.png' etc). Formats other than '.dot' require "
 "the dot program to be installed (http://www.graphviz.org/).")
parser.add_option("-n", "--just_print", dest="just_print",
 action="store_true", default=False,
 help="Only print a trace (description) of the pipeline. "
 " The level of detail is set by --verbose.")

(options, remaining_args) = parser.parse_args()

if not options.flowchart:
 if not options.database_file:
 parser.error("\n\n\tMissing parameter --database_file FILE\n\n")
 if not options.input_file:
 parser.error("\n\n\tMissing parameter --input_file FILE\n\n")

#888

imports

#888

from ruffus import *
import subprocess

#888

Functions

#888
def run_cmd(cmd_str):
 """
 Throw exception if run command fails
 """
 process = subprocess.Popen(cmd_str, stdout = subprocess.PIPE,
 stderr = subprocess.PIPE, shell = True)
 stdout_str, stderr_str = process.communicate()
 if process.returncode != 0:
 raise Exception("Failed to run '%s'\n%s%sNon-zero exit status %s" %
 (cmd_str, stdout_str, stderr_str, process.returncode))

#888

Logger

#888

import logging
logger = logging.getLogger("run_parallel_blast")
#
We are interesting in all messages
#
if options.verbose:
 logger.setLevel(logging.DEBUG)
 stderrhandler = logging.StreamHandler(sys.stderr)
 stderrhandler.setFormatter(logging.Formatter(" %(message)s"))
 stderrhandler.setLevel(logging.DEBUG)
 logger.addHandler(stderrhandler)

#888

Pipeline tasks

#888
original_fasta = options.input_file
database_file = options.database_file
temp_directory = options.temp_directory
result_file = options.result_file

@follows(mkdir(temp_directory))

@split(original_fasta, os.path.join(temp_directory, "*.segment"))
def splitFasta (seqFile, segments):
 """Split sequence file into
 as many fragments as appropriate
 depending on the size of original_fasta"""
 #
 # Clean up any segment files from previous runs before creating new one
 #
 for i in segments:
 os.unlink(i)
 #
 current_file_index = 0
 for line in open(original_fasta):
 #
 # start a new file for each accession line
 #
 if line[0] == '>':
 current_file_index += 1
 file_name = "%d.segment" % current_file_index
 file_path = os.path.join(temp_directory, file_name)
 current_file = open(file_path, "w")
 current_file.write(line)

@transform(splitFasta, suffix(".segment"), [".blastResult", ".blastSuccess"])
def runBlast(seqFile, output_files):
 #
 blastResultFile, flag_file = output_files
 #
 run_cmd("blastall -p blastp -d human.protein.faa -i %s > %s" % (seqFile, blastResultFile))
 #
 # "touch" flag file to indicate success
 #
 open(flag_file, "w")

@merge(runBlast, result_file)
def combineBlastResults (blastResult_and_flag_Files, combinedBlastResultFile):
 """Combine blast results"""
 #
 output_file = open(combinedBlastResultFile, "w")
 for blastResult_file, flag_file in blastResult_and_flag_Files:
 output_file.write(open(blastResult_file).read())

#888

Print list of tasks

#888
if options.just_print:
 pipeline_printout(sys.stdout, [combineBlastResults], verbose=options.verbose)

#888

Print flowchart

#888
elif options.flowchart:
 # use file extension for output format
 output_format = os.path.splitext(options.flowchart)[1][1:]
 pipeline_printout_graph (open(options.flowchart, "w"),
 output_format,
 [combineBlastResults],
 no_key_legend = True)
#888

Run Pipeline

#888
else:
 pipeline_run([combineBlastResults], multiprocess = options.jobs,
 logger = logger, verbose=options.verbose)

Example code for FAQ Good practices: “What is the best way of handling data in file pairs (or triplets etc.)?”

See also

	@collate

#!/usr/bin/env python
import sys, os

from ruffus import *
import ruffus.cmdline as cmdline
from subprocess import check_call

parser = cmdline.get_argparse(description="Parimala's pipeline?")

.
Very flexible handling of input files .
.
input files can be specified flexibly as: .
--input a.fastq b.fastq .
--input a.fastq --input b.fastq .
--input *.fastq --input other/*.fastq .
--input "*.fastq" .
.
The last form is expanded in the script and avoids limitations on command .
line lengths .
.
parser.add_argument('-i', '--input', nargs='+', metavar="FILE", action="append", help = "Fastq files")

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging ("PARIMALA", options.log_file, options.verbose)

.
Useful code to turn input files into a flat list .
.
from glob import glob
original_data_files = [fn for grouped in options.input for glob_spec in grouped for fn in glob(glob_spec)] if options.input else []
if not original_data_files:
 original_data_files = [["C1W1_R1.fastq.gz", "C1W1_R2.fastq.gz"]]
 #raise Exception ("No matching files specified with --input.")

<<<---- pipelined functions go here

#___
.
Group together file pairs .
#___
@collate(original_data_files,
 # match file name up to the "R1.fastq.gz"
 formatter("([^/]+)R[12].fastq.gz$"),
 # Create output parameter supplied to next task
 ["{path[0]}/{1[0]}paired.R1.fastq.gz", # paired file 1
 "{path[0]}/{1[0]}paired.R2.fastq.gz"], # paired file 2
 # Extra parameters for our own convenience and use
 ["{path[0]}/{1[0]}unpaired.R1.fastq.gz", # unpaired file 1
 "{path[0]}/{1[0]}unpaired.R2.fastq.gz"], # unpaired file 2
 logger, logger_mutex)
def trim_fastq(input_files, output_paired_files, discarded_unpaired_files, logger, logger_mutex):
 if len(input_files) != 2:
 raise Exception("One of read pairs %s missing" % (input_files,))
 cmd = ("java -jar ~/SPRING-SUMMER_2014/Softwares/Trimmomatic/Trimmomatic-0.32/trimmomatic-0.32.jar "
 " PE -phred33 "
 " {input_files[0]} {input_files[1]} "
 " {output_paired_files[0]} {output_paired_files[1]} "
 " {discarded_unpaired_files[0]} {discarded_unpaired_files[1]} "
 " LEADING:30 TRAILING:30 SLIDINGWINDOW:4:15 MINLEN:50 "
)

 check_call(cmd.format(**locals()))

 with logger_mutex:
 logger.debug("Hooray trim_fastq worked")

#___
.
Each file pair now makes its way down the rest of the pipeline as .
a couple .
#___
@transform(trim_fastq,
 # regular expression match on first of pe files
 formatter("([^/]+)paired.R1.fastq.gz$"),
 # Output parameter supplied to next task
 "{path[0]}/{1[0]}.sam"

 # Extra parameters for our own convenience and use
 "{path[0]}/{1[0]}.pe_soap_pe", # soap intermediate file
 "{path[0]}/{1[0]}.pe_soap_se", # soap intermediate file
 logger, logger_mutex)
def align_seq(input_files, output_file, soap_pe_output_file, soap_se_output_file, logger, logger_mutex):
 if len(input_files) != 2:
 raise Exception("One of read pairs %s missing" % (input_files,))
 cmd = ("~/SPRING-SUMMER_2014/Softwares/soap2.21release/soap "
 " -a {input_files[0]} "
 " -b {input_files[1]} "
 " -D Y55_genome.fa.index* "
 " -o {soap_pe_output_file} -2 {soap_se_output_file} -m 400 -x 600")

 check_call(cmd.format(**locals()))

 #Soap_to_sam
 cmd = " perl ~/SPRING-SUMMER_2014/Softwares/soap2sam.pl -p {soap_pe_output_file} > {output_file}"

 check_call(cmd.format(**locals()))

 with logger_mutex:
 logger.debug("Hooray align_seq worked")

cmdline.run (options)

New Object Orientated Syntax

Ruffus Pipelines can now be created and manipulated directly using Pipeline and Task objects instead of via decorators.

Note

You may want to go through the worked_example first.

Syntax

This traditional Ruffus code:

from ruffus import *

task function
starting_files = ["input/a.fasta","input/b.fasta"]
@transform(input = starting_files,
 filter = suffix('.fasta'),
 output = '.sam',
 output_dir = "output")
def map_dna_sequence(input_file, output_file) :
 pass

pipeline_run()

Can also be written as:

from ruffus import *

undecorated task function
def map_dna_sequence(input_file, output_file) :
 pass

starting_files = ["input/a.fasta","input/b.fasta"]

make ruffus Pipeline() object
my_pipeline = Pipeline(name = "test")
my_pipeline.transform(task_func = map_dna_sequence,
 input = starting_files,
 filter = suffix('.fasta'),
 output = '.sam',
 output_dir = "output")

my_pipeline.run()

The two different syntax are almost identical:

The first parameter task_func=your_python_function is mandatory.

Otherwise, all other parameters are in the same order as before, and can be given by position or as named arguments.

Advantages

These are some of the advantages of the new syntax:

	Pipeline topology is assembled in one place

This is a matter of personal preference.

Nevertheless, using decorators to locally annotate python functions with pipeline parameters arguably
helps separation of concerns.

	Pipelines can be created on the fly

For example, using parameters parsed from configuration files.

Ruffus pipelines no longer have to be defined at global scope.

	Reuse common sub-pipelines

Shared sub pipelines can be created from discrete python modules and joined together
as needed. Bioinformaticists may have “mapping”, “aligning”, “variant-calling” sub-pipelines etc.

	Multiple Tasks can share the same python function

Tasks are normally referred to by their associated functions (as with decoratored Ruffus tasks).
However, you can also disambiguate Tasks by specifying their name directly.

	Pipeline topology can be specified at run time

Some (especially bioinformatics) tasks require binary merging. This can be very inconvenient.

For example, if we have 8 data files, we need three successive rounds of merging (8->4->2->1)
or three tasks) to produce the output. But if we are given 10 data files, we now find that
we needed to have four tasks for four rounds of merging (10->5->3->2->1).

There was previously no easy way to arrange different Ruffus topologies in response to the
data. Now we can add as many extra merging tasks to our pipeline (all sharing the same underlying
python function) as needed.

Compatability

	The changes are fully backwards compatibile. All valid Ruffus code continues to work

	Decorators and Pipeline objects can be used interchangeably:

	Decorated functions are automatically part of a default constructed Pipeline named "main".

	main_pipeline = Pipeline.pipelines["main"]

In the following example, a pipeline using the
Ruffus with classes syntax (1) and (3) has a traditionally decorated task function in the middle (2).

from ruffus import *

get default pipeline
main_pipeline = Pipeline.pipelines["main"]

undecorated task functions
def compress_sam_to_bam(input_file, output_file) :
 open(output_file, "w").close()

def create_files(output_file) :
 open(output_file, "w").close()

#
1. Ruffus with classes
#
starting_files = main_pipeline.originate(create_files, ["input/a.fasta","input/b.fasta"])\
 .follows(mkdir("input", "output"))

#
2. Ruffus with python decorations
#
@transform(starting_files,
 suffix('.fasta'),
 '.sam',
 output_dir = "output")
def map_dna_sequence(input_file, output_file) :
 open(output_file, "w").close()

#
3. Ruffus with classes
#
main_pipeline.transform(task_func = compress_sam_to_bam,
 input = map_dna_sequence,
 filter = suffix(".sam"),
 output = ".bam")

main_pipeline.run()
or
pipeline_run()

Class methods

The ruffus.Pipeline class has the following self-explanatory methods:

Pipeline.run(...)
Pipeline.printout(...)
Pipeline.printout_graph(...)

These methods return a ruffus.Task object

Pipeline.originate(...)
Pipeline.transform(...)
Pipeline.split(...)
Pipeline.merge(...)
Pipeline.mkdir(...)

Pipeline.collate(...)
Pipeline.subdivide(...)

Pipeline.combinations(...)
Pipeline.combinations_with_replacement(...)
Pipeline.product(...)
Pipeline.permutations(...)

Pipeline.follows(...)
Pipeline.check_if_uptodate(...)
Pipeline.graphviz(...)

Pipeline.files(...)
Pipeline.parallel(...)

A Ruffus Task can be modified with the following methods

Task.active_if(...)
Task.check_if_uptodate(...)
Task.follows(...)
Task.graphviz(...)
Task.jobs_limit(...)
Task.mkdir(...)
Task.posttask(...)

Call chaining

The syntax is designed to allow call chaining:

Pipeline.transform(...)\
 .mkdir(follows(...))\
 .active_if(...)\
 .graphviz(...)

Referring to Tasks

Ruffus pipelines are chained together or specified by referring to each stage or Task.

(1) and (2) are ways to referring to tasks that Ruffus has always supported.

(3) - (6) are new to Ruffus v 2.6 but apply
to both using decorators or the new Ruffus with classes syntax.

1) Python function

@transform(prev_task, ...)
def next_task():
 pass

pipeline.transform(input = next_task, ...)

2) Python function name (using output_from)

pipeline.transform(input = output_from("prev_task"), ...)

Note

The above (1) and (2) only work if the Python function specifies the task unambiguously in a pipeline.
If you reuse the same Python function for multiple tasks, use the following methods.

Ruffus will complain with Exceptions if your code is ambiguous.

3) Task object

 prev_task = pipeline.transform(...)

 # prev_task is a Task object
 next_task = pipeline.transform(input = prev_task,)

4) Task name (using output_from)

name this task "prev_task"
pipeline.transform(name = "prev_task",...)

pipeline.transform(input = output_from("prev_task"),)

Note

Tasks from other pipelines can be referred to using full qualified names in the pipeline::task format

pipeline.transform(input = output_from("other_pipeline::prev_task"),)

5) Pipeline

When we are assembling our pipeline from sub-pipelines (especially those in other modules which other people might have written)
it is inconvenient to break encapsulation to find out the component Task of the subpipeline.

In which case, the sub-pipeline author can assign particular tasks to the head and tail of the pipeline.
The pipeline will be an alias for these:

Note: these functions take lists
sub_pipeline.set_head_tasks([first_task])
sub_pipeline.set_tail_tasks([last_task])

first_task.set_input(...)
sub_pipeline.set_input(input = "*.txt")

(input = last_task,...)
main_pipeline.transform(input = sub_pipeline,)

If you don’t have access to a pipeline object, you can look it up via the Pipeline object

This is the default "main" pipeline which holds decorated task functions
main_pipeline = Pipeline.pipelines["main"]

my_pipeline = Pipeline("test")

alias_to_my_pipeline = Pipeline.pipelines["test"]

6) Lookup Task via the Pipeline

We can ask a Pipeline to lookup task names, functions and function names for us.

Lookup task name
pipeline.transform(input = pipeline["prev_task"],)

Lookup via python function
pipeline.transform(input = pipeline[python_function],)

Lookup via python function name
pipeline.transform(input = pipeline["python_function_name"],)

This is straightforward if the lookup is unambiguous for the pipeline.

If the names are not found in the pipeline, Ruffus will look across all pipelines.

Any ambiguities will result in an immediate error.

In extremis, you can use pipeline qualified names

Pipeline qualified task name
pipeline.transform(input = pipeline["other_pipeline::prev_task"],)

Note

All this will be much clearer going through the worked_example.

Worked Example for New Object orientated syntax for Ruffus in Version 2.6

Ruffus Pipelines can now be created and manipulated directly using Pipeline and Task objects instead of via decorators.

For clarity, we use named parameters in this example. You can just as easily pass all parameters by position.

Worked example

Note

Remember to look at the example code:

	Python Code for: New Object orientated syntax for Ruffus in Version 2.6

This example pipeline is a composite of three separately subpipelines each created by a python
function make_pipeline1() which is joined to another subpipeline created by make_pipeline2()

[image: ../_images/subpipeline_example.png]
Although there are 13 different stages to this pipeline, we are using the same three python functions
(but supplying them with different data).

def task_originate(o):
 # Makes new files
 ...

def task_m_to_1(i, o):
 # Merges files together
 ...

def task_1_to_1(i, o):
 # One input per output
 ...

Pipeline factory

Let us start with a python function which makes a full formed sub pipeline useable as a modular building block

Pipelines need to have a unique name
def make_pipeline1(pipeline_name,
 starting_file_names):
 pass

Note that we are passing the pipeline name as the first parameter.

All pipelines must have unique names

test_pipeline = Pipeline(pipeline_name)

new_task = test_pipeline.originate(task_func = task_originate,
 output = starting_file_names)\
 .follows(mkdir(tempdir), mkdir(tempdir + "testdir", tempdir + "testdir2"))\
 .posttask(touch_file(tempdir + "testdir/whatever.txt"))

A new task is returned from test_pipeline.originate(...) which is then modified via .follows(...)
and .posttask(...). This is familiar Ruffus syntax only slightly rearranged.

We can change the output=starting_file_names later using set_output() but sometimes it
is just more convenient to pass this as a parameter to the pipeline factory function.

Note

The first, mandatory parameter is task_func = task_originate which is the python function for this task

Three different ways of referring to input Tasks

Just as in traditional Ruffus, Pipelines are created by setting the input of one task to (the output of) its predecessor.

test_pipeline.transform(task_func = task_m_to_1,
 name = "add_input",
 # Lookup Task from function task_originate()
 # Needs to be unique in the pipeline
 input = task_originate,
 filter = regex(r"(.*)"),
 add_inputs = add_inputs(tempdir + "testdir/whatever.txt"),
 output = r"\1.22")
test_pipeline.transform(task_func = task_1_to_1,
 name = "22_to_33",
 # Lookup Task from unique Task name = "add_input"
 # Function name is not unique in the pipeline
 input = output_from("add_input"),
 filter = suffix(".22"),
 output = ".33")
tail_task = test_pipeline.transform(task_func = task_1_to_1,
 name = "33_to_44",
 # Ask test_pipeline to lookup Task name = "22_to_33"
 input = test_pipeline["22_to_33"],
 filter = suffix(".33"),
 output = ".44")

Head and Tail Tasks

Set the tail task: test_pipeline can be used as an input
without knowing the details of task names
#
Use Task object=tail_task directly
test_pipeline.set_tail_tasks([tail_task])

Set the head task: we can feed input into test_pipeline
without knowing the details of task names
test_pipeline.set_head_tasks([test_pipeline[task_originate]])

return test_pipeline

By calling set_tail_tasks and set_head_tasks to assign the first and last stages of
test_pipeline, we can later use test_pipeline without knowing its component Tasks.

The last step is to return the fully formed pipeline instance

Another Pipeline factory

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline2(pipeline_name = "pipeline2", do_not_define_head_task = False):
 test_pipeline2 = Pipeline(pipeline_name)
 test_pipeline2.transform(task_func = task_1_to_1,
 # task name
 name = "44_to_55",
 # placeholder: will be replaced later with set_input()
 input = None,
 filter = suffix(".44"),
 output = ".55")
 test_pipeline2.merge(task_func = task_m_to_1,
 input = test_pipeline2["44_to_55"],
 output = tempdir + "final.output",)
 # Lookup task using function name
 # This is unique within pipeline2
 test_pipeline2.set_tail_tasks([test_pipeline2[task_m_to_1]])

 # Lookup task using task name
 test_pipeline2.set_head_tasks([test_pipeline2["44_to_55"]])

 return test_pipeline2

make_pipeline2() looks very similar to make_pipeline1 except that the input for the head task
is left blank for assigning later

Note that we can use task_m_to_1 to look up a Task (test_pipeline2[task_m_to_1]) even
though this function is also used by test_pipeline. There is no ambiguity so long as only one
task in test_pipeline2 uses this python function.

Creating multiple copies of a pipeline

Let us call make_pipeline1() to make two completely independent pipelines ("pipeline1a" and "pipeline1b")

First two pipelines are created as separate instances by make_pipeline1()
pipeline1a = make_pipeline1(pipeline_name = "pipeline1a", starting_file_names = [tempdir + ss for ss in ("a.1", "b.1")])
pipeline1b = make_pipeline1(pipeline_name = "pipeline1b", starting_file_names = [tempdir + ss for ss in ("c.1", "d.1")])

We can also create a new instance of a pipeline by “cloning” an existing pipeline

pipeline1c is a clone of pipeline1b
pipeline1c = pipeline1b.clone(new_name = "pipeline1c")

Because "pipeline1c" is a clone of "pipeline1b", it shares exactly the same parameters.
Let us change this by giving "pipeline1c" its own starting files.

We can do this for normal (e.g. transform, split, merge etc) tasks by calling

transform_task.set_input(input = xxx)

@originate doesn’t take input but creates results specified in the output parameter.
To finish setting up pipeline1c:

Set the "originate" files for pipeline1c to ("e.1" and "f.1")
Otherwise they would use the original ("c.1", "d.1")
pipeline1c.set_output(output = [tempdir + ss for ss in ("e.1", "f.1")])

We only create one copy of pipeline2

pipeline2 = make_pipeline2()

Connecting pipelines together

Because we have previously assigned head and tail tasks, we can easily join the pipelines together:

Join all pipeline1a-c to pipeline2
pipeline2.set_input(input = [pipeline1a, pipeline1b, pipeline1c])

Running a composite pipeline

Ruffus automatically follows the antecedent dependencies of each task even if they are from another
pipeline.

This means that you can run composite pipelines seamlessly, without any effort:

Only runs pipeline1a
pipeline1a.run()

Runs pipeline1a,b,c -> pipeline2
pipeline2.run(multiprocess = 10, verbose = 0)

Note

Remember to look at the example code:

	Python Code for: New Object orientated syntax for Ruffus in Version 2.6

Python Code for: New Object orientated syntax for Ruffus in Version 2.6

See also

	new_syntax.worked_example

This code is adapted from test/test_subpipeline.py in the Ruffus distribution

Output

Let us save the script to test_subpipeline_cmdline.py

	
	Try running the script as is:

	# cleanup before and afterwards
$./test_subpipeline_cmdline.py --cleanup

	If we printout the pipeline, we can see that, by default,
the entire pipeline (with all its sub-pipelines) will run.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print

__
Tasks which will be run:

Task = "pipeline1a::mkdir('tempdir/') before task_originate "
Task = "pipeline1a::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1a::task_originate'
Task = 'pipeline1a::add_input'
Task = 'pipeline1a::22_to_33'
Task = 'pipeline1a::33_to_44'
Task = "pipeline1b::mkdir('tempdir/') before task_originate "
Task = "pipeline1b::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1b::task_originate'
Task = 'pipeline1b::add_input'
Task = 'pipeline1b::22_to_33'
Task = 'pipeline1b::33_to_44'
Task = "pipeline1c::mkdir('tempdir/') before task_originate "
Task = "pipeline1c::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1c::task_originate'
Task = 'pipeline1c::add_input'
Task = 'pipeline1c::22_to_33'
Task = 'pipeline1c::33_to_44'
Task = 'pipeline2::44_to_55'
Task = 'pipeline2::task_m_to_1'

	Specifying either the main pipeline2 or the last task in pipeline2 produces the same output. All the ancestral tasks in pipelines1a-c will be run automatically.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline2

$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline2::task_m_to_1

	Specifying only pipeline1a or any task in pipeline1a in --target_tasks will only run the specified tasks in that subpipeline.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline1a
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --forced_tasks pipeline1a::task_originate

Task = "pipeline1a::mkdir('tempdir/') before task_originate "
Task = "pipeline1a::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1a::task_originate'
Task = 'pipeline1a::add_input'
Task = 'pipeline1a::22_to_33'
Task = 'pipeline1a::33_to_44'

Code

#!/usr/bin/env python
from __future__ import print_function
"""

 Demonstrates the new Ruffus syntax in version 2.6
"""

import os
import sys

add grandparent to search path for testing
grandparent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))
sys.path.insert(0, grandparent_dir)

import ruffus
from ruffus import add_inputs, suffix, mkdir, regex, Pipeline, output_from, touch_file
print("\tRuffus Version = ", ruffus.__version__)

#888

imports

#888
import shutil

def touch (outfile):
 with open(outfile, "w"):
 pass

#888

Tasks

#888
tempdir = "tempdir/"
def task_originate(o):
 """
 Makes new files
 """
 touch(o)

def task_m_to_1(i, o):
 """
 Merges files together
 """
 with open(o, "w") as o_file:
 for f in sorted(i):
 with open(f) as ii:
 o_file.write(f +"=" + ii.read() + "; ")

def task_1_to_1(i, o):
 """
 1 to 1 for transform
 """
 with open(o, "w") as o_file:
 with open(i) as ii:
 o_file.write(i +"+" + ii.read())

DEBUG_do_not_define_tail_task = False
DEBUG_do_not_define_head_task = False

import unittest

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline1(pipeline_name, # Pipelines need to have a unique name
 starting_file_names):
 test_pipeline = Pipeline(pipeline_name)

 # We can change the starting files later using
 # set_input() for transform etc.
 # or set_output() for originate
 # But it can be more convenient to just pass this to the function making the pipeline
 #
 test_pipeline.originate(task_originate, starting_file_names)\
 .follows(mkdir(tempdir), mkdir(tempdir + "testdir", tempdir + "testdir2"))\
 .posttask(touch_file(tempdir + "testdir/whatever.txt"))
 test_pipeline.transform(task_func = task_m_to_1,
 name = "add_input",
 # Lookup Task from function name task_originate()
 # So long as this is unique in the pipeline
 input = task_originate,
 filter = regex(r"(.*)"),
 add_inputs = add_inputs(tempdir + "testdir/whatever.txt"),
 output = r"\1.22")
 test_pipeline.transform(task_func = task_1_to_1,
 name = "22_to_33",
 # Lookup Task from Task name
 # Function name is not unique in the pipeline
 input = output_from("add_input"),
 filter = suffix(".22"),
 output = ".33")
 tail_task = test_pipeline.transform(task_func = task_1_to_1,
 name = "33_to_44",
 # Ask Pipeline to lookup Task from Task name
 input = test_pipeline["22_to_33"],
 filter = suffix(".33"),
 output = ".44")

 # Set the tail task so that users of my sub pipeline can use it as a dependency
 # without knowing the details of task names
 #
 # Use Task() object directly without having to lookup
 test_pipeline.set_tail_tasks([tail_task])

 # If we try to connect a Pipeline without tail tasks defined, we have to
 # specify the exact task within the Pipeline.
 # Otherwise Ruffus will not know which task we mean and throw an exception
 if DEBUG_do_not_define_tail_task:
 test_pipeline.set_tail_tasks([])

 # Set the head task so that users of my sub pipeline send input into it
 # without knowing the details of task names
 test_pipeline.set_head_tasks([test_pipeline[task_originate]])

 return test_pipeline

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline2(pipeline_name = "pipeline2"):
 test_pipeline2 = Pipeline(pipeline_name)
 test_pipeline2.transform(task_func = task_1_to_1,
 # task name
 name = "44_to_55",
 # placeholder: will be replaced later with set_input()
 input = None,
 filter = suffix(".44"),
 output = ".55")
 test_pipeline2.merge(task_func = task_m_to_1,
 input = test_pipeline2["44_to_55"],
 output = tempdir + "final.output",)

 # Set head and tail
 test_pipeline2.set_tail_tasks([test_pipeline2[task_m_to_1]])
 if not DEBUG_do_not_define_head_task:
 test_pipeline2.set_head_tasks([test_pipeline2["44_to_55"]])

 return test_pipeline2

First two pipelines are created as separate instances by the make_pipeline1 function
pipeline1a = make_pipeline1(pipeline_name = "pipeline1a", starting_file_names = [tempdir + ss for ss in ("a.1", "b.1")])
pipeline1b = make_pipeline1(pipeline_name = "pipeline1b", starting_file_names = [tempdir + ss for ss in ("c.1", "d.1")])

The Third pipeline is a clone of pipeline1b
pipeline1c = pipeline1b.clone(new_name = "pipeline1c")

Set the "originate" files for pipeline1c to ("e.1" and "f.1")
Otherwise they would use the original ("c.1", "d.1")
pipeline1c.set_output(output = [])
pipeline1c.set_output(output = [tempdir + ss for ss in ("e.1", "f.1")])

Join all pipeline1a-c to pipeline2
pipeline2 = make_pipeline2()
pipeline2.set_input(input = [pipeline1a, pipeline1b, pipeline1c])

import ruffus.cmdline as cmdline
parser = cmdline.get_argparse(description='Demonstrates the new Ruffus syntax in version 2.6')

parser.add_argument('--cleanup', "-C",
 action="store_true",
 help="Cleanup before and after.")

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

if we are printing only
if not options.just_print and \
 not options.flowchart and \
 not options.touch_files_only:
 cmdline.run (options)
 sys.exit()

#
Cleanup beforehand
#
if options.cleanup:
 try:
 shutil.rmtree(tempdir)
 except:
 pass

#
Run
#
cmdline.run (options)

#
Cleanup Afterwards
#
if options.cleanup:
 try:
 shutil.rmtree(tempdir)
 except:
 pass

FAQ

Citations

Q. How should Ruffus be cited in academic publications?

The official publication describing the original version of Ruffus is:

Leo Goodstadt (2010) [http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524] : Ruffus: a lightweight Python library for computational pipelines. Bioinformatics 26(21): 2778-2779

Q. How is Ruffus licenced?

Ruffus is available under the permissive MIT [http://en.wikipedia.org/wiki/MIT_License] free software license.

This permits free use and inclusion even within proprietary software.

However, all derived source copies need to include the original License terms and copyright notice.

Good practices

Q. What is the best way of keeping my data and workings separate?

It is good practice to run your pipeline in a temporary, “working” directory away from your original data.

The first step of your pipeline might be to make softlinks to your original data in your working directory.
This is example (relatively paranoid) code to do just this:

 def re_symlink (input_file, soft_link_name, logger, logging_mutex):
 """
 Helper function: relinks soft symbolic link if necessary
 """
 # Guard agains soft linking to oneself: Disastrous consequences of deleting the original files!!
 if input_file == soft_link_name:
 logger.debug("Warning: No symbolic link made. You are using the original data directory as the working directory.")
 return
 # Soft link already exists: delete for relink?
 if os.path.lexists(soft_link_name):
 # do not delete or overwrite real (non-soft link) file
 if not os.path.islink(soft_link_name):
 raise Exception("%s exists and is not a link" % soft_link_name)
 try:
 os.unlink(soft_link_name)
 except:
 with logging_mutex:
 logger.debug("Can't unlink %s" % (soft_link_name))
 with logging_mutex:
 logger.debug("os.symlink(%s, %s)" % (input_file, soft_link_name))
 #
 # symbolic link relative to original directory so that the entire path
 # can be moved around with breaking everything
 #
 os.symlink(os.path.relpath(os.path.abspath(input_file),
 os.path.abspath(os.path.dirname(soft_link_name))), soft_link_name)

 #
 # First task should soft link data to working directory
 #
 @jobs_limit(1)
 @mkdir(options.working_dir)
 @transform(input_files,
 formatter(),
 # move to working directory
 os.path.join(options.working_dir, "{basename[0]}{ext[0]}"),
 logger, logging_mutex
)
 def soft_link_inputs_to_working_directory (input_file, soft_link_name, logger, logging_mutex):
 """
 Make soft link in working directory
 """
 with logging_mutex:
 logger.info("Linking files %(input_file)s -> %(soft_link_name)s\n" % locals())
 re_symlink(input_file, soft_link_name, logger, logging_mutex)

Q. What is the best way of handling data in file pairs (or triplets etc.)

In Bioinformatics, DNA data often consists of only the nucleotide sequence at the two ends of larger fragments.
The paired_end [http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.ilmn] or
mate pair [http://en.wikipedia.org/wiki/Shotgun_sequencing#Whole_genome_shotgun_sequencing] data frequently
consists of of file pairs with conveniently related names such as “.R1.fastq” and “.R2.fastq”.

At some point in data pipeline, these file pairs or triplets must find each other and be analysed in the same job.

Provided these file pairs or triplets are named consistently, an easiest way to regroup them is to use the
Ruffus @collate decorator. For example:

@collate(original_data_files,

 # match file name up to the "R1.fastq.gz"
 formatter("([^/]+)R[12].fastq.gz$"),

 # Create output parameter supplied to next task
 "{path[0]}/{1[0]}.sam",
 logger, logger_mutex)
def handle_paired_end(input_files, output_paired_files, logger, logger_mutex):
 # check that we really have a pair of two files not an orphaned singleton
 if len(input_files) != 2:
 raise Exception("One of read pairs %s missing" % (input_files,))

 # do stuff here

This (incomplete, untested) example code shows what this would look like in vivo.

General

Q. Ruffus won’t create dependency graphs

A. You need to have installed dot from Graphviz [http://www.graphviz.org/] to produce
pretty flowcharts likes this:

[image: _images/pretty_flowchart.png]

Q. Ruffus seems to be hanging in the same place

A. If ruffus is interrupted, for example, by a Ctrl-C,
you will often find the following lines of code highlighted:

File "build/bdist.linux-x86_64/egg/ruffus/task.py", line 1904, in pipeline_run
File "build/bdist.linux-x86_64/egg/ruffus/task.py", line 1380, in run_all_jobs_in_task
File "/xxxx/python2.6/multiprocessing/pool.py", line 507, in next
 self._cond.wait(timeout)
File "/xxxxx/python2.6/threading.py", line 237, in wait
 waiter.acquire()

This is not where ruffus is hanging but the boundary between the main programme process
and the sub-processes which run ruffus jobs in parallel.

This is naturally where broken execution threads get washed up onto.

Q. Regular expression substitutions don’t work

A. If you are using the special regular expression forms "\1", "\2" etc.
to refer to matching groups, remember to ‘escape’ the subsitution pattern string.
The best option is to use ‘raw’ python strings [http://docs.python.org/library/re.html].
For example:

r"\1_substitutes\2correctly\3four\4times"

Ruffus will throw an exception if it sees an unescaped "\1" or "\2" in a file name.

Q. How to force a pipeline to appear up to date?

I have made a trivial modification to one of my data files and now Ruffus wants to rerun my month long pipeline. How can I convince Ruffus that everything is fine and to leave things as they are?

The standard way to do what you are trying to do is to touch all the files downstream…
That way the modification times of your analysis files would postdate your existing files.
You can do this manually but Ruffus also provides direct support:

pipeline_run (touch_files_only = True)

pipeline_run will run your script normally stepping over up-to-date tasks and starting
with jobs which look out of date. However, after that, none of your pipeline task functions
will be called, instead, each non-up-to-date file is touch [https://en.wikipedia.org/wiki/Touch_(Unix)]-ed in
turn so that the file modification dates follow on successively.

See the documentation for pipeline_run()

It is even simpler if you are using the new Ruffus.cmdline support from version 2.4. You can just type

your script --touch_files_only [--other_options_of_your_own_etc]

See command line documentation.

Q. How can I use my own decorators with Ruffus?

(Thanks to Radhouane Aniba for contributing to this answer.)

	With care! If the following two points are observed:

1. Use @wraps [https://docs.python.org/2/library/functools.html#functools.wraps] from functools or Michele Simionato’s decorator [https://pypi.python.org/pypi/decorator] module

These will automatically forward attributes from the task function correctly:

	__name__ and __module__ is used to identify functions uniquely in a Ruffus pipeline, and

	pipeline_task is used to hold per task data

2. Always call Ruffus decorators first before your own decorators.

Otherwise, your decorator will be ignored.

So this works:

@follows(prev_task)
@custom_decorator(something)
def test():
 pass

This is a bit futile

ignore @custom_decorator
@custom_decorator(something)
@follows(prev_task)
def test():
 pass

This order dependency is an unfortunate quirk of how python decorators work. The last (rather futile)
piece of code is equivalent to:

test = custom_decorator(something)(ruffus.follows(prev_task)(test))

Unfortunately, Ruffus has no idea that someone else (custom_decorator) is also modifying the test() function
after it (ruffus.follows) has had its go.

Example decorator:

Let us look at a decorator to time jobs:

import sys, time
def time_func_call(func, stream, *args, **kwargs):
 """prints elapsed time to standard out, or any other file-like object with a .write() method.
 """
 start = time.time()
 # Run the decorated function.
 ret = func(*args, **kwargs)
 # Stop the timer.
 end = time.time()
 elapsed = end - start
 stream.write("{} took {} seconds\n".format(func.__name__, elapsed))
 return ret

from ruffus import *
import sys
import time

@time_job(sys.stderr)
def first_task():
 print "First task"

@follows(first_task)
@time_job(sys.stderr)
def second_task():
 print "Second task"

@follows(second_task)
@time_job(sys.stderr)
def final_task():
 print "Final task"

pipeline_run()

What would @time_job look like?

1. Using functools @wraps [https://docs.python.org/2/library/functools.html#functools.wraps]

import functools
def time_job(stream=sys.stdout):
 def actual_time_job(func):
 @functools.wraps(func)
 def wrapper(*args, **kwargs):
 return time_func_call(func, stream, *args, **kwargs)
 return wrapper
 return actual_time_job

2. Using Michele Simionato’s decorator [https://pypi.python.org/pypi/decorator] module

import decorator
def time_job(stream=sys.stdout):
 def time_job(func, *args, **kwargs):
 return time_func_call(func, stream, *args, **kwargs)
 return decorator.decorator(time_job)

2. By hand, using a callable object [https://docs.python.org/2/reference/datamodel.html#emulating-callable-objects]

class time_job(object):
 def __init__(self, stream=sys.stdout):
 self.stream = stream
 def __call__(self, func):
 def inner(*args, **kwargs):
 return time_func_call(func, self.stream, *args, **kwargs)
 # remember to forward __name__
 inner.__name__ = func.__name__
 inner.__module__ = func.__module__
 inner.__doc__ = func.__doc__
 if hasattr(func, "pipeline_task"):
 inner.pipeline_task = func.pipeline_task
 return inner

Q. Can a task function in a Ruffus pipeline be called normally outside of Ruffus?

A. Yes. Most python decorators wrap themselves around a function. However, Ruffus leaves the
original function untouched and unwrapped. Instead, Ruffus adds a pipeline_task attribute
to the task function to signal that this is a pipelined function.

This means the original task function can be called just like any other python function.

Q. My Ruffus tasks create two files at a time. Why is the second one ignored in successive stages of my pipeline?

This is my code:

from ruffus import *
import sys
@transform("start.input", regex(".+"), ("first_output.txt", "second_output.txt"))
def task1(i,o):
 pass

@transform(task1, suffix(".txt"), ".result")
def task2(i, o):
 pass

pipeline_printout(sys.stdout, [task2], verbose=3)

__
Tasks which will be run:

Task = task1
 Job = [start.input
 ->[first_output.txt, second_output.txt]]

Task = task2
 Job = [[first_output.txt, second_output.txt]
 ->first_output.result]

__

A: This code produces a single output of a tuple of 2 files. In fact, you want two
outputs, each consisting of 1 file.

You want a single job (single input) to be produce multiple outputs (multiple jobs
in downstream tasks). This is a one-to-many operation which calls for
@split:

from ruffus import *
import sys
@split("start.input", ("first_output.txt", "second_output.txt"))
def task1(i,o):
 pass

@transform(task1, suffix(".txt"), ".result")
def task2(i, o):
 pass

pipeline_printout(sys.stdout, [task2], verbose=3)

__
Tasks which will be run:

Task = task1
 Job = [start.input
 ->[first_output.txt, second_output.txt]]

Task = task2
 Job = [first_output.txt
 ->first_output.result]
 Job = [second_output.txt
 ->second_output.result]

__

Q. How can a Ruffus task produce output which goes off in different directions?

A. As above, anytime there is a situation which requires a one-to-many operation, you should reach
for @subdivide. The advanced form takes a regular expression, making
it easier to produce multiple derivatives of the input file. The following example subdivides
2 jobs each into 3, so that the subsequence task will run 2 x 3 = 6 jobs.

from ruffus import *
import sys
@subdivide(["1.input_file",
 "2.input_file"],
 regex(r"(.+).input_file"), # match file prefix
 [r"\1.file_type1",
 r"\1.file_type2",
 r"\1.file_type3"])
def split_task(input, output):
 pass

@transform(split_task, regex("(.+)"), r"\1.test")
def test_split_output(i, o):
 pass

pipeline_printout(sys.stdout, [test_split_output], verbose = 3)

Each of the original 2 files have been split in three so that test_split_output will run
6 jobs simultaneously.

__
Tasks which will be run:

Task = split_task
 Job = [1.input_file ->[1.file_type1, 1.file_type2, 1.file_type3]]
 Job = [2.input_file ->[2.file_type1, 2.file_type2, 2.file_type3]]

Task = test_split_output
 Job = [1.file_type1 ->1.file_type1.test]
 Job = [1.file_type2 ->1.file_type2.test]
 Job = [1.file_type3 ->1.file_type3.test]
 Job = [2.file_type1 ->2.file_type1.test]
 Job = [2.file_type2 ->2.file_type2.test]
 Job = [2.file_type3 ->2.file_type3.test]
__

Q. Can I call extra code before each job?

A. This is easily accomplished by hijacking the process
for checking if jobs are up to date or not (@check_if_uptodate):

from ruffus import *
import sys

def run_this_before_each_job (*args):
 print "Calling function before each job using these args", args
 # Remember to delegate to the default *Ruffus* code for checking if
 # jobs need to run.
 return needs_update_check_modify_time(*args)

@check_if_uptodate(run_this_before_each_job)
@files([[None, "a.1"], [None, "b.1"]])
def task_func(input, output):
 pass

pipeline_printout(sys.stdout, [task_func])

This results in:

__
>>> pipeline_run([task_func])
Calling function before each job using these args (None, 'a.1')
Calling function before each job using these args (None, 'a.1')
Calling function before each job using these args (None, 'b.1')
 Job = [None -> a.1] completed
 Job = [None -> b.1] completed
Completed Task = task_func

Note

Because run_this_before_each_job(...) is called whenever Ruffus checks to see if
a job is up to date or not, the function may be called twice for some jobs
(e.g. (None, 'a.1') above).

Q. Does Ruffus allow checkpointing: to distinguish interrupted and completed results?

A. Use the builtin sqlite checkpointing

By default, pipeline_run(...) will save the timestamps for output files from successfully run jobs to an sqlite database file (.ruffus_history.sqlite) in the current directory .

	If you are using Ruffus.cmdline, you can change the checksum / timestamp database file name on the command line using --checksum_file_name NNNN

	

The level of timestamping / checksumming can be set via the checksum_level parameter:

pipeline_run(..., checksum_level = N, ...)

where the default is 1:

level 0 : Use only file timestamps
level 1 : above, plus timestamp of successful job completion
level 2 : above, plus a checksum of the pipeline function body
level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

A. Use a flag file

When gmake is interrupted, it will delete the target file it is updating so that the target is
remade from scratch when make is next run. Ruffus, by design, does not do this because, more often than
not, the partial / incomplete file may be usefully if only to reveal, for example, what might have caused an interrupting error
or exception. It also seems a bit too clever and underhand to go around the programmer’s back to delete files…

A common Ruffus convention is create an empty checkpoint or “flag” file whose sole purpose
is to record a modification-time and the successful completion of a job.

This would be task with a completion flag:

#
Assuming a pipelined task function named "stage1"
#
@transform(stage1, suffix(".stage1"), [".stage2", ".stage2_finished"])
def stage2 (input_files, output_files):
 task_output_file, flag_file = output_files
 cmd = ("do_something2 %(input_file)s >| %(task_output_file)s ")
 cmd = cmd % {
 "input_file": input_files[0],
 "task_output_file": task_output_file
 }
 if not os.system(cmd):
 #888
 #
 # It worked: Create completion flag_file
 #
 open(flag_file, "w")
 #
 #888

The flag_files xxx.stage2_finished indicate that each job is finished. If this is missing,
xxx.stage2 is only a partial, interrupted result.

The only thing to be aware of is that the flag file will appear in the list of inputs of the
downstream task, which should accordingly look like this:

@transform(stage2, suffix(".stage2"), [".stage3", ".stage3_finished"])
def stage3 (input_files, output_files):

 #888
 #
 # Note that the first parameter is a LIST of input files, the last of which
 # is the flag file from the previous task which we can ignore
 #
 input_file, previous_flag_file = input_files
 #
 #888
 task_output_file, flag_file = output_files
 cmd = ("do_something3 %(input_file)s >| %(task_output_file)s ")
 cmd = cmd % {
 "input_file": input_file,
 "task_output_file": task_output_file
 }
 # completion flag file for this task
 if not os.system(cmd):
 open(flag_file, "w")

The Bioinformatics example contains code for checkpointing.

A. Use a temp file

Thanks to Martin Goodson for suggesting this and providing an example. In his words:

“I normally use a decorator to create a temporary file which is only renamed after the task has completed without any problems. This seems a more elegant solution to the problem:”

def usetemp(task_func):
 """ Decorate a function to write to a tmp file and then rename it. So half finished tasks cannot create up to date targets.
 """
 @wraps(task_func)
 def wrapper_function(*args, **kwargs):
 args=list(args)
 outnames=args[1]
 if not isinstance(outnames, basestring) and hasattr(outnames, '__getitem__'):
 tmpnames=[str(x)+".tmp" for x in outnames]
 args[1]=tmpnames
 task_func(*args, **kwargs)
 try:
 for tmp, name in zip(tmpnames, outnames):
 if os.path.exists(tmp):
 os.rename(tmp, str(name))
 except BaseException as e:
 for name in outnames:
 if os.path.exists(name):
 os.remove(name)
 raise (e)
 else:
 tmp=str(outnames)+'.tmp'
 args[1]=tmp
 task_func(*args, **kwargs)
 os.rename(tmp, str(outnames))
return wrapper_function

Use like this:

@files(None, 'client1.price')
@usetemp
def getusers(inputfile, outputname):
 #**
 # code goes here
 # outputname now refers to temporary file
 pass

Windows

Q. Windows seems to spawn ruffus processes recursively

A. It is necessary to protect the “entry point” of the program under windows.
Otherwise, a new process will be started each time the main module is imported
by a new Python interpreter as an unintended side effects. Causing a cascade
of new processes.

See: http://docs.python.org/library/multiprocessing.html#multiprocessing-programming

This code works:

if __name__ == '__main__':
 try:
 pipeline_run([parallel_task], multiprocess = 5)
except Exception, e:
 print e.args

Sun Grid Engine / PBS / SLURM etc

Q. Can Ruffus be used to manage a cluster or grid based pipeline?

	Some minimum modifications have to be made to your Ruffus script to allow it to submit jobs to a cluster

See ruffus.drmaa_wrapper

Thanks to Andreas Heger and others at CGAT and Bernie Pope for contributing ideas and code.

Q. When I submit lots of jobs via Sun Grid Engine (SGE), the head node occassionally freezes and dies

	You need to use multithreading rather than multiprocessing. See ruffus.drmaa_wrapper

Q. Keeping Large intermediate files

Sometimes pipelines create a large number of intermediate files which might not be needed later.

Unfortunately, the current design of Ruffus requires these files to hang around otherwise the pipeline
will not know that it ran successfully.

We have some tentative plans to get around this but in the meantime, Bernie Pope suggests
truncating intermediate files in place, preserving timestamps:

truncate a file to zero bytes, and preserve its original modification time
def zeroFile(file):
 if os.path.exists(file):
 # save the current time of the file
 timeInfo = os.stat(file)
 try:
 f = open(file,'w')
 except IOError:
 pass
 else:
 f.truncate(0)
 f.close()
 # change the time of the file back to what it was
 os.utime(file,(timeInfo.st_atime, timeInfo.st_mtime))

Sharing python objects between Ruffus processes running concurrently

The design of Ruffus envisages that much of the data flow in pipelines occurs in files but it is also possible to pass python objects in memory.

Ruffus uses the multiprocessing [http://docs.python.org/2/library/multiprocessing.html] module and much of the following is a summary of what is covered
in depth in the Python Standard Library Documentation [http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes].

Running Ruffus using pipeline_run(..., multiprocess = NNN) where NNN > 1 runs each job concurrently on up to NNN separate local processes.
Each task function runs independently in a different python intepreter, possibly on a different CPU, in the most efficient way.
However, this does mean we have to pay some attention to how data is sent across process boundaries (unlike the situation with pipeline_run(..., multithread = NNN)).

The python code and data which comprises your multitasking Ruffus job is sent to a separate process in three ways:

	The python function code and data objects are pickled [http://docs.python.org/2/library/pickle.html], i.e. converting into a byte stream, by the master process, sent to the remote process
before being converted back into normal python (unpickling).

	The parameters for your jobs, i.e. what Ruffus calls your task functions with, are separately pickled [http://docs.python.org/2/library/pickle.html] and sent to the remote process via
multiprocessing.Queue [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue]

	You can share and synchronise other data yourselves. The canonical example is the logger provided by Ruffus.cmdline.setup_logging

Note

Check that your function code and data can be pickled [http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled].

Only functions, built-in functions and classes defined at the top level of a module are picklable.

The following answers are a short “how-to” for sharing and synchronising data yourselves.

Can ordinary python objects be shared between processes?

	Objects which can be pickled [http://docs.python.org/2/library/pickle.html] can be shared as is. These include

	numbers

	strings

	tuples, lists, sets, and dictionaries containing only objects which can be pickled [http://docs.python.org/2/library/pickle.html].

	If these do not change during your pipeline, you can just use them without any further effort in your task.

	If you need to use the value at the point when the task function is called, then you need to pass the python object as parameters to your task.
For example:

 # changing_list changes...
 @transform(previous_task, suffix(".foo"), ".bar", changing_list)
 def next_task(input_file, output_file, changing_list):
 pass

	If you need to use the value when the task function is run then see the following answer..

Why am I getting PicklingError?

What is happening? Didn’t Joan of Arc [https://en.wikipedia.org/wiki/Battle_of_the_Herrings] solve this once and for all?

	Some of the data or code in your function cannot be pickled [http://docs.python.org/2/library/pickle.html] and is being asked to be sent by python mulitprocessing across process boundaries.

When you run your pipeline using multiprocess:

pipeline_run([], verbose = 5, multiprocess = 5, logger = ruffusLoggerProxy)

You will get the following errors:

Exception in thread Thread-2:
Traceback (most recent call last):
 File "/path/to/python/python2.7/threading.py", line 808, in __bootstrap_inner
 self.run()
 File "/path/to/python/python2.7/threading.py", line 761, in run
 self.__target(*self.__args, * *self.__kwargs)
 File "/path/to/python/python2.7/multiprocessing/pool.py", line 342, in _handle_tasks
 put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

which go away when you set pipeline_run([], multiprocess = 1, ...)

Unfortunately, pickling errors are particularly ill-served by standard python error messages. The only really good advice is to take the offending
code and try and pickle [http://docs.python.org/2/library/pickle.html] it yourself and narrow down the errors. Check your objects against the list
in the pickle [http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled] module.
Watch out especially for nested functions. These will have to be moved to file scope.
Other objects may have to be passed in proxy (see below).

How about synchronising python objects in real time?

	You can use managers and proxy objects from the multiprocessing [http://docs.python.org/library/multiprocessing.html] module.

The underlying python object would be owned and managed by a (hidden) server process. Other processes can access the shared objects transparently by using proxies. This is how the logger provided by
Ruffus.cmdline.setup_logging works:

optional logger which can be passed to ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

logger is a proxy for the underlying python logger [http://docs.python.org/2/library/logging.html] object, and it can be shared freely between processes.

The best course is to pass logger as a parameter to a Ruffus task.

The only caveat is that we should make sure multiple jobs are not writting to the log at the same time. To synchronise logging, we use proxy to a non-reentrant multiprocessing.lock [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Lock].

logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

@transform(previous_task, suffix(".foo"), ".bar", logger, logger_mutex)
def next_task(input_file, output_file, logger, logger_mutex):
 with logger_mutex:
 logger.info("We are in the middle of next_task: %s -> %s" % (input_file, output_file))

Can I share and synchronise my own python classes via proxies?

	multiprocessing.managers.SyncManager [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager] provides out of the box support for lists, arrays and dicts etc.

Most of the time, we can use a “vanilla” manager provided by multiprocessing.Manager() [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.multiprocessing.Manager]:

import multiprocessing
manager = multiprocessing.Manager()

list_proxy = manager.list()
dict_proxy = manager.dict()
lock_proxy = manager.Lock()
namespace_proxy = manager.Namespace()
queue_proxy = manager.Queue([maxsize])
rentrant_lock_proxy = manager.RLock()
semaphore_proxy = manager.Semaphore([value])
char_array_proxy = manager.Array('c')
integer_proxy = manager.Value('i', 6)

@transform(previous_task, suffix(".foo"), ".bar", lock_proxy, dict_proxy, list_proxy)
def next_task(input_file, output_file, lock_proxy, dict_proxy, list_proxy):
 with lock_proxy:
 list_proxy.append(3)
 dict_proxy['a'] = 5

However, you can also create proxy custom classes for your own objects.

In this case you may need to derive from multiprocessing.managers.SyncManager [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager]
and register proxy functions. See Ruffus.proxy_logger for an example of how to do this.

How do I send python objects back and forth without tangling myself in horrible synchronisation code?

	Sharing python objects by passing messages is a much more modern and safer way to coordinate multitasking than using synchronization primitives like locks.

The python multiprocessing [http://docs.python.org/2/library/multiprocessing.html#pipes-and-queues] module provides support for passing python objects as messages between processes.
You can either use pipes [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe]
or queues [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue].
The idea is that one process pushes and object onto a pipe [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe] or queue [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue]
and the other processes pops it out at the other end. Pipes [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe] are
only two ended so queues [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue] are usually a better fit for sending data to multiple Ruffus jobs.

Proxies for queues [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager.Queue] can be passed between processes as in the previous section

How do I share large amounts of data efficiently across processes?

	If it is really impractical to use data files on disk, you can put the data in shared memory.

It is possible to create shared objects using shared memory which can be inherited by child processes or passed as Ruffus parameters.
This is probably most efficently done via the array [http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Array]
interface. Again, it is easy to create locks and proxies for synchronised access:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

manager = multiprocessing.Manager()

lock_proxy = manager.Lock()
int_array_proxy = manager.Array('i', [123] * 100)

@transform(previous_task, suffix(".foo"), ".bar", lock_proxy, int_array_proxy)
def next_task(input_file, output_file, lock_proxy, int_array_proxy):
 with lock_proxy:
 int_array_proxy[23] = 71

 [image: _images/logo.jpg]

Hall of Fame

Please contribute your own work flows in your favourite colours with (an optional) short description
to email: ruffus_lib at llew.org.uk

RNASeq pipeline

http://en.wikipedia.org/wiki/RNA-Seq

Mapping transcripts onto genomes using high-throughput sequencing technologies (svg).

[image: _images/gallery_rna_seq.png]

non-coding evolutionary constraints

http://en.wikipedia.org/wiki/Noncoding_DNA

Non-protein coding evolutionary constraints in different species (svg).

[image: _images/gallery_dless.png]

SNP annotation

Predicting impact of different Single Nucleotide Polymorphisms

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

Population variation across genomes (svg).

[image: _images/gallery_snp_annotation.png]
Using “pseudo” targets to run only part of the pipeline (svg).

[image: _images/gallery_snp_annotation_consequences.png]

Chip-Seq analysis

Analysing DNA binding sites with Chip-Seq
http://en.wikipedia.org/wiki/Chip-Sequencing

(svg)

[image: _images/gallery_big_pipeline.png]

Who is Ruffus?

Cylindrophis ruffus is the name of the
red-tailed pipe snake [http://en.wikipedia.org/wiki/Cylindrophis_ruffus] (bad python-y pun)
which can be found in Hong Kong [http://www.discoverhongkong.com/eng/index.html] where the author Leo Goodstadt comes from.

Ruffus is a shy creature, and pretends to be a cobra or a banded krait [http://en.wikipedia.org/wiki/File:Bandedkrait.jpg] by putting up its red tail and ducking its
head in its coils when startled.

	[image: _images/wikimedia_cyl_ruffus.jpg]

	[image: _images/wikimedia_bandedkrait.jpg]

	
	Not venomous

	Mostly Harmless [http://en.wikipedia.org/wiki/Mostly_Harmless]

	
	Deadly poisonous

	Seriously unfriendly [http://en.wikipedia.org/wiki/List_of_races_and_species_in_The_Hitchhiker's_Guide_to_the_Galaxy#Ravenous_Bugblatter_Beast_of_Traal]

Be careful not to step on one when running down country park lanes at full speed
in Hong Kong: this snake is a rare breed [http://www.hkras.org/eng/info/hkspp.htm]!

Ruffus does most of its work at night and sleeps during the day: typical of many (but alas not all) python programmers!

The original red-tail pipe [http://upload.wikimedia.org/wikipedia/commons/a/a1/Cyl_ruffus_061212_2025_tdp.jpg] and banded krait [http://en.wikipedia.org/wiki/File:AB_054_Banded_Krait.JPG] images are from wikimedia.

Release notes

Release 2.8.3

	add missing import

Release 2.8.2

	implement retry behaviour for input file check.

Release 2.8.1

	[#101] compatibility with gevent >= 1.2

	add lookup_pipeline to exported functions

	fix tests (thanks @LocutusOfBorg, @xnox)

Release 2.8.0

	Ctrl-C will kill drmaa jobs, SIGUSR1 will suspend jobs and SIGUSR2
will resume.

	[#99] use gevent semaphores

	[#87] run everything through autopep8

	[#86] use pytest for testing

	python3.7 compatibility, thanks to @jbarlow83, @QuLogic

Release 2.6.3

	@transform works even when the ouput has more than one file.

	@subdivide works in exactly the same way as @transform.

	ruffus.drmaa_wrapper.run_job() works with python3 `(github) Fixed issue with byte and text streams.

	ruffus.drmaa.wrapper.run_job() allows env (environment) to be set for jobs run locally as well as those on the cluster.

	New object-orientated style syntax works seamlessly with Ruffus command line support.

Release 2.6.2

	pipeline_printout_graph()` incompatibility with python3 fixed.

	checkpointing did not work correctly with @split and @subdivide.

	@transoform has easier to understand syntax and takes care of most common use cases of ruffus (Thanks Milan Simonovic).

	@transform takes an optional output_dir.

	Decorators can take named parameters.

 See Decorators for more decorators

Ruffus Functions

There are four functions for Ruffus pipelines:

	pipeline_run executes a pipeline

	pipeline_printout prints a list of tasks and jobs which will be run in a pipeline

	pipeline_printout_graph prints a schematic flowchart of pipeline tasks in various graphical formats

	pipeline_get_task_names returns a list of all task names in the pipeline

and a helper function to run jobs via drmaa:

	drmaa_wrapper.run_job Switches commands between execution remotely on a computational cluster or locally (via subprocess [https://docs.python.org/2/library/subprocess.html]).

pipeline_run

pipeline_run (target_tasks = [], forcedtorun_tasks = [], multiprocess = 1, logger = stderr_logger, gnu_make_maximal_rebuild_mode = True, verbose =1, runtime_data = None, one_second_per_job = True, touch_files_only = False, exceptions_terminate_immediately = None, log_exceptions = None, history_file = None, checksum_level = None, multithread = 0, verbose_abbreviated_path = None)

Purpose:

Runs all specified pipelined functions if they or any antecedent tasks are
incomplete or out-of-date.

Example:

#
Run task2 whatever its state, and also task1 and antecedents if they are incomplete
Do not log pipeline progress messages to stderr
#
pipeline_run([task1, task2], forcedtorun_tasks = [task2], logger = blackhole_logger)

Parameters:

	
	target_tasks

	Pipeline functions and any necessary antecedents (specified implicitly or with @follows)
which should be invoked with the appropriate parameters if they are incomplete or out-of-date.

	
	forcedtorun_tasks

	Optional. These pipeline functions will be invoked regardless of their state.
Any antecedents tasks will also be executed if they are out-of-date or incomplete.

	
	multiprocess

	Optional. The number of processes which should be dedicated to running in parallel independent
tasks and jobs within each task. If multiprocess is set to 1, the pipeline will
execute in the main process.

	
	multithread

	Optional. The number of threads which should be dedicated to running in parallel independent
tasks and jobs within each task. Should be used only with drmaa. Otherwise the CPython global interpreter lock (GIL) [https://wiki.python.org/moin/GlobalInterpreterLock]
will slow down your pipeline

	
	logger

	For logging messages indicating the progress of the pipeline in terms of tasks and jobs.
Defaults to outputting to sys.stderr.
Setting logger=blackhole_logger will prevent any logging output.

	
	gnu_make_maximal_rebuild_mode

	
Warning

This is a dangerous option. Use rarely and with caution

Optional parameter governing how Ruffus determines which part of the pipeline is
out of date and needs to be re-run. If set to False, ruffus will work back
from the target_tasks and only execute the pipeline after the first up-to-date
tasks that it encounters. For example, if there are four tasks:

#
task1 -> task2 -> task3 -> task4 -> task5
#
target_tasks = [task5]

If task3() is up-to-date, then only task4() and task5() will be run.
This will be the case even if task2() and task1() are incomplete.

This allows you to remove all intermediate results produced by task1 -> task3.

	
	verbose

	Optional parameter indicating the verbosity of the messages sent to logger:
(Defaults to level 1 if unspecified)

	level 0 : nothing

	level 1 : Out-of-date Task names

	level 2 : All Tasks (including any task function docstrings)

	level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

	level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

	level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

	level 6 : All jobs in All Tasks whether out of date or not

	level 10: logs messages useful only for debugging ruffus pipeline code

verbose >= 10 are intended for debugging Ruffus by the developers and the details
are liable to change from release to release

	
	runtime_data

	Experimental feature for passing data to tasks at run time

	
	one_second_per_job

	To work around poor file timepstamp resolution for some file systems.
Defaults to True if checksum_level is 0 forcing Tasks to take a minimum of 1 second to complete.
If your file system has coarse grained time stamps, you can turn on this delay
by setting one_second_per_job to True

	
	touch_files_only

	Create or update output files only to simulate the running of the pipeline.
Does not invoke real task functions to run jobs. This is most useful to force a
pipeline to acknowledge that a particular part is now up-to-date.

This will not work properly if the identities of some files are not known before hand,
and depend on run time. In other words, not recommended if @split or custom parameter generators are being used.

	
	exceptions_terminate_immediately

	Exceptions cause immediate termination of the pipeline.

	
	log_exceptions

	Print exceptions to the logger as soon as they occur.

	
	history_file

	The database file which stores checksums and file timestamps for input/output files.
Defaults to .ruffus_history.sqlite if unspecified

	
	checksum_level

	Several options for checking up-to-dateness are available: Default is level 1.

	level 0 : Use only file timestamps

	level 1 : above, plus timestamp of successful job completion

	level 2 : above, plus a checksum of the pipeline function body

	level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

	
	verbose_abbreviated_path

	Whether input and output paths are abbreviated. Defaults to 2 if unspecified

	level 0: The full (expanded, abspath) input or output path

	level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with [,,,]/

	level < 0: Input / Output parameters are truncated to MMM letters where verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by <???>

pipeline_printout

pipeline_printout (output_stream = sys.stdout, target_tasks = [], forcedtorun_tasks = [], verbose = 1, indent = 4, gnu_make_maximal_rebuild_mode = True, wrap_width = 100, runtime_data = None, checksum_level = None, history_file = None, verbose_abbreviated_path = None)

Purpose:

Prints out all the pipelined functions which will be invoked given specified target_tasks
without actually running the pipeline. Because this is a simulation, some of the job
parameters may be incorrect. For example, the results of a @split
operation is not predetermined and will only be known after the pipelined function
splits up the original data. Parameters of all downstream pipelined functions will
be changed depending on this initial operation.

	Example:

	#
Simulate running task2 whatever its state, and also task1 and antecedents
if they are incomplete
Print out results to STDOUT
#
pipeline_printout(sys.stdout, [task1, task2], forcedtorun_tasks = [task2], verbose = 1)

Parameters:

	
	output_stream

	Where to printout the results of simulating the running of the pipeline.

	
	target_tasks

	As in pipeline_run: Pipeline functions and any necessary antecedents (specified implicitly or with @follows)
which should be invoked with the appropriate parameters if they are incomplete or out-of-date.

	
	forcedtorun_tasks

	As in pipeline_run:These pipeline functions will be invoked regardless of their state.
Any antecedents tasks will also be executed if they are out-of-date or incomplete.

	
	verbose

	Optional parameter indicating the verbosity of the messages sent to logger:
(Defaults to level 4 if unspecified)

	level 0 : nothing

	level 1 : Out-of-date Task names

	level 2 : All Tasks (including any task function docstrings)

	level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

	level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

	level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

	level 6 : All jobs in All Tasks whether out of date or not

	level 10: logs messages useful only for debugging ruffus pipeline code

verbose >= 10 are intended for debugging Ruffus by the developers and the details
are liable to change from release to release

	
	indent

	Optional parameter governing the indentation when printing out the component job
parameters of each task function.

	
	gnu_make_maximal_rebuild_mode

	
Warning

This is a dangerous option. Use rarely and with caution

See explanation in pipeline_run.

	
	wrap_width

	Optional parameter governing the length of each line before it starts wrapping
around.

	
	runtime_data

	Experimental feature for passing data to tasks at run time

	
	history_file

	The database file which stores checksums and file timestamps for input/output files.
Defaults to .ruffus_history.sqlite if unspecified

	
	checksum_level

	Several options for checking up-to-dateness are available: Default is level 1.

	level 0 : Use only file timestamps

	level 1 : above, plus timestamp of successful job completion

	level 2 : above, plus a checksum of the pipeline function body

	level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

	
	verbose_abbreviated_path

	Whether input and output paths are abbreviated. Defaults to 2 if unspecified

	level 0: The full (expanded, abspath) input or output path

	level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with [,,,]/

	level < 0: Input / Output parameters are truncated to MMM letters where verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by <???>

pipeline_printout_graph

pipeline_printout_graph (stream, output_format = None, target_tasks = [], forcedtorun_tasks = [], ignore_upstream_of_target = False, skip_uptodate_tasks = False, gnu_make_maximal_rebuild_mode = True, test_all_task_for_update = True, no_key_legend = False, minimal_key_legend = True, user_colour_scheme = None, pipeline_name = “Pipeline”, size = (11,8), dpi = 120, runtime_data = None, checksum_level = None, history_file = None)

Purpose:

Prints out flowchart of all the pipelined functions which will be invoked given specified target_tasks
without actually running the pipeline.

See Flowchart colours

	Example:

	pipeline_printout_graph("flowchart.jpg", "jpg", [task1, task16],
 forcedtorun_tasks = [task2],
 no_key_legend = True)

Customising appearance:

The user_colour_scheme parameter can be used to change
flowchart colours. This allows the default Colour Schemes
to be set. An example of customising flowchart appearance is available (see code) .

Parameters:

	
	stream

	The file or file-like object to which the flowchart should be printed.
If a string is provided, it is assumed that this is the name of the output file
which will be opened automatically.

	
	output_format

	If missing, defaults to the extension of the stream file name (i.e. jpg for a.jpg)

If the programme dot can be found on the executio path, this
can be any number of formats [http://www.graphviz.org/doc/info/output.html]
supported by Graphviz [http://www.graphviz.org/], including, for example,
jpg, png, pdf, svg etc.

Otherwise, ruffus will only output without error in the dot [http://en.wikipedia.org/wiki/DOT_language] format, which
is a plain-text graph description language.

	
	target_tasks

	As in pipeline_run: Pipeline functions and any necessary antecedents (specified implicitly or with @follows)
which should be invoked with the appropriate parameters if they are incomplete or out-of-date.

	
	forcedtorun_tasks

	As in pipeline_run:These pipeline functions will be invoked regardless of their state.
Any antecedents tasks will also be executed if they are out-of-date or incomplete.

	
	draw_vertically

	Draw flowchart in vertical orientation

	
	ignore_upstream_of_target

	Start drawing flowchart from specified target tasks. Do not draw tasks which are
downstream (subsequent) to the targets.

	
	ignore_upstream_of_target

	Do not draw up-to-date / completed tasks in the flowchart unless they are
lie on the execution path of the pipeline.

	
	gnu_make_maximal_rebuild_mode

	
Warning

This is a dangerous option. Use rarely and with caution

See explanation in pipeline_run.

	
	test_all_task_for_update

	
Indicates whether intermediate tasks are out of date or not. Normally Ruffus will
stop checking dependent tasks for completion or whether they are out-of-date once it has
discovered the maximal extent of the pipeline which has to be run.

For displaying the flow of the pipeline, this is hardly very informative.

	
	no_key_legend

	Do not include key legend explaining the colour scheme of the flowchart.

	
	minimal_key_legend

	Do not include unused task types in key legend.

	
	user_colour_scheme

	Dictionary specifying colour scheme for flowchart

See complete list of Colour Schemes.

Colours can be names e.g. "black" or quoted hex e.g. '"#F6F4F4"' (note extra quotes)

Default values will be used unless specified

	key

	Subkey

	

	
	'colour_scheme_index'

	
index of default colour scheme,

0-7, defaults to 0 unless specified

	

	
	'Final target'

	'Explicitly specified task'

	'Task to run'

	'Down stream'

	'Up-to-date Final target'

	'Up-to-date task forced to rerun'

	'Up-to-date task'

	'Vicious cycle'

	
	'fillcolor'

	'fontcolor'

	'color'

	'dashed' = 0/1

	Colours / attributes for each task type

	
	'Vicious cycle'

	'Task to run'

	'Up-to-date'

	
	'linecolor'

	Colours for arrows between tasks

	
	'Pipeline'

	
	'fontcolor'

	Flowchart title colour

	
	'Key'

	
	'fontcolor'

	'fillcolor'

	Legend colours

Example:

Use colour scheme index = 1

pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
 user_colour_scheme = {
 "colour_scheme_index" :1,
 "Pipeline" :{"fontcolor" : '"#FF3232"' },
 "Key" :{"fontcolor" : "Red",
 "fillcolor" : '"#F6F4F4"' },
 "Task to run" :{"linecolor" : '"#0044A0"' },
 "Final target" :{"fillcolor" : '"#EFA03B"',
 "fontcolor" : "black",
 "dashed" : 0 }
 })

	
	pipeline_name

	Specify title for flowchart

	
	size

	Size in inches for flowchart

	
	dpi

	Resolution in dots per inch. Ignored for svg output

	
	runtime_data

	Experimental feature for passing data to tasks at run time

	
	history_file

	The database file which stores checksums and file timestamps for input/output files.
Defaults to .ruffus_history.sqlite if unspecified

	
	checksum_level

	Several options for checking up-to-dateness are available: Default is level 1.

	level 0 : Use only file timestamps

	level 1 : above, plus timestamp of successful job completion

	level 2 : above, plus a checksum of the pipeline function body

	level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

pipeline_get_task_names

pipeline_get_task_names ()

Purpose:

Returns a list of all task names in the pipeline without running the pipeline or checking to see if the tasks are connected correctly

Example:

Given:

from ruffus import *

@originate([])
def create_data(output_files):
 pass

@transform(create_data, suffix(".txt"), ".task1")
def task1(input_files, output_files):
 pass

@transform(task1, suffix(".task1"), ".task2")
def task2(input_files, output_files):
 pass

Produces a list of three task names:

>>> pipeline_get_task_names ()
['create_data', 'task1', 'task2']

run_job

Note

drmaa_wrapper is not exported automatically by ruffus and must be specified explicitly:

imported ruffus.drmaa_wrapper explicitly
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

run_job (cmd_str, job_name, job_other_options, job_script_directory = None, job_environment, working_directory, logger, drmaa_session, retain_job_scripts, run_locally, output_files, touch_only)

Purpose:

ruffus.drmaa_wrapper.run_job dispatches a command with arguments to a cluster or Grid Engine node and waits for the command to complete.

It is the semantic equivalent of calling os.system [http://docs.python.org/2/library/os.html#os.system] or
subprocess.check_output [http://docs.python.org/2/library/subprocess.html#subprocess.check_call].

Example:

from ruffus.drmaa_wrapper import run_job, error_drmaa_job
import drmaa
my_drmaa_session = drmaa.Session()
my_drmaa_session.initialize()

run_job("ls",
 job_name = "test",
 job_other_options="-P mott-flint.prja -q short.qa",
 job_script_directory = "test_dir",
 job_environment={ 'BASH_ENV' : '~/.bashrc' },
 retain_job_scripts = True, drmaa_session=my_drmaa_session)
run_job("ls",
 job_name = "test",
 job_other_options="-P mott-flint.prja -q short.qa",
 job_script_directory = "test_dir",
 job_environment={ 'BASH_ENV' : '~/.bashrc' },
 retain_job_scripts = True,
 drmaa_session=my_drmaa_session,
 working_directory = "/gpfs1/well/mott-flint/lg/src/oss/ruffus/doc")

#
catch exceptions
#
try:
 stdout_res, stderr_res = run_job(cmd,
 job_name = job_name,
 logger = logger,
 drmaa_session = drmaa_session,
 run_locally = options.local_run,
 job_other_options = get_queue_name())

relay all the stdout, stderr, drmaa output to diagnose failures
except error_drmaa_job as err:
 raise Exception("\n".join(map(str,
 ["Failed to run:",
 cmd,
 err,
 stdout_res,
 stderr_res])))

my_drmaa_session.exit()

Parameters:

	cmd_str

The command which will be run remotely including all parameters

	job_name

A descriptive name for the command. This will be displayed by SGE qstat [http://gridscheduler.sourceforge.net/htmlman/htmlman1/qstat.html], for example.
Defaults to “ruffus_job”

	job_other_options

Other drmaa parameters can be passed verbatim as a string.

Examples for SGE include project name (-P project_name), parallel environment (-pe parallel_environ), account (-A account_string), resource (-l resource=expression),
queue name (-q a_queue_name), queue priority (-p 15).

These are parameters which you normally need to include when submitting jobs interactively, for example via
SGE qsub [http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html]
or SLURM [http://apps.man.poznan.pl/trac/slurm-drmaa/wiki/WikiStart#Nativespecification] (srun [https://computing.llnl.gov/linux/slurm/srun.html])

	job_script_directory

The directory where drmaa temporary script files will be found. Defaults to the current working directory.

	job_environment

A dictionary of key / values with environment variables. E.g. "{'BASH_ENV': '~/.bashrc'}"

	working_directory

	Sets the working directory.

	Should be a fully qualified path.

	Defaults to the current working directory.

	retain_job_scripts

If set to True, will not delete temporary script files containg drmaa commands. Useful for
debugging, running on the command line directly, and can provide a useful record of the commands.

	logger

For logging messages indicating the progress of the pipeline in terms of tasks and jobs. Takes objects with the standard python
logging [https://docs.python.org/2/library/logging.html] module interface.

	drmaa_session

A shared drmaa session created and managed separately.

In the main part of your Ruffus pipeline script somewhere there should be code looking like this:

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

#
pipeline functions
#

if __name__ == '__main__':
 cmdline.run (options, multithread = options.jobs)
 drmaa_session.exit()

	run_locally

If set to True, will run commands locally using the standard python subprocess [https://docs.python.org/2/library/subprocess.html] module
rather than dispatching remotely. This allows scripts to be debugged easily

	touch_only

If set to True, will create or update Output files
only to simulate the running of the pipeline.
Does not dispatch commands remotely or locally. This is most useful to force a
pipeline to acknowledge that a particular part is now up-to-date.

See also: pipeline_run(touch_files_only=True)

	output_files

A list of output file names which will be created or updated if touch_only =True

Ruffus Decorators

See also

Indicator objects

Core

	Decorator

	Examples

	

	@originate (Summary / Manual)

	Creates (originates) a set of starting file from scratch (ex nihilo!)

	Only called to create files which do not exist.

	Each item in output is created by a separate job.

	
	
	@originate (output, [extras,…])

	

	

	@split (Summary / Manual)

	Splits a single input into multiple output

	Globs in output can specify an indeterminate number of files.

	
	
	@split (input, output, [extras,…])

	

	

	@transform (Summary / Manual)

	
Applies the task function to

transform input data to output.

	
	
	@transform (input, suffix() , output, [extras,…])

	

	
	@transform (input, regex() , output, [extras,…])

	

	
	@transform (input, formatter() , output, [extras,…])

	

	

	@merge (Summary / Manual)

	Merges multiple input files into a single output.

	
	
	@merge (input, output, [extras,…])

	

	

Combinatorics

	Decorator

	Examples

	

	@product (Summary / Manual)

	Generates the product between sets of input, i.e. all vs all comparisons.

	
	
	@product (input, formatter() ,*[* input, formatter(), output, [extras,…])

	

	

	@permutations (Summary / Manual)

	Generates the permutations, between all elements of a set of Input

	Analogous to the python itertools.permutations [http://docs.python.org/2/library/itertools.html#itertools.permutations]

	permutations(‘ABCD’, 2) –> AB AC AD BA BC BD CA CB CD DA DB DC

	
	
	@permutations (input, formatter(), tuple_size, output, [extras,…])

	

	

	@combinations (Summary / Manual)

	Generates the permutations, between all elements of a set of Input

	Analogous to the python itertools.combinations [http://docs.python.org/2/library/itertools.html#itertools.permutations]

	combinations(‘ABCD’, 3) –> ABC ABD ACD BCD

	Generates the combinations, between all the elements of a set of Input:
i.e. r-length tuples of input elements with no repeated elements (A A)
and where order of the tuples is irrelevant
(either A B or B A, not both).

	
	
	@combinations (input, formatter(), tuple_size, output, [extras,…])

	

	

	@combinations_with_replacement (Summary / Manual)

	Generates the permutations, between all the elements of a set of Input

	Analogous to the python itertools.permutations [http://docs.python.org/2/library/itertools.html#itertools.permutations]

	combinations(‘ABCD’, 3) –> ABC ABD ACD BCD

	Generates the combinations_with_replacement,
between all the elements of a set of Input:
i.e. r-length tuples of input elements with no repeated elements (A A)
and where order of the tuples is irrelevant
(either A B or B A, not both).

	
	
	@combinations_with_replacement (input, formatter(), tuple_size, output, [extras,…])

	

	

Advanced

	Decorator

	Examples

	

	@subdivide (Summary / Manual)

	Subdivides each input into multiple Outputs.

	The number of output can be determined at runtime using globs.

	Many to Even More operator.

	Do not use split as a synonym for subdivide.

	
	
	@subdivide (input, regex() , [inputs | add_inputs(input_pattern),] output, [extras,…])

	

	
	@subdivide (input, formatter([]), [inputs | add_inputs(input_pattern),] output, [extras,…])

	

	

	@transform (Summary / Manual)

	Generates both input & output from regular expressions

	Useful for adding additional file dependencies

	
	
	@transform (input, regex() , [inputs | add_inputs(input_pattern),] output, [extras,…])

	

	
	@transform (input, formatter() , [inputs | add_inputs(input_pattern),] output, [extras,…])

	

	

	@collate (Summary / Manual)

	Groups multiple input using regular expression matching.

	Multiple input generating identical output are collated together.

	
	
	@collate (input, regex() , output, [extras,…])

	

	
	@collate (input, regex() , inputs | add_inputs(input_pattern), output, [extras,…])

	

	
	@collate (input, formatter() , output, [extras,…])

	

	
	@collate (input, formatter() , inputs | add_inputs(input_pattern), output, [extras,…])

	

	

	@follows (Summary / Manual)

	Indicates task dependency

	optional mkdir prerequisite (see Manual)

	
	
	@follows (task1, 'task2'))

	

	
	@follows (task1, mkdir('my/directory/'))

	

	

	@posttask (Summary / Manual)

	Calls function after task completes

	Optional touch_file indicator (Manual)

	
	
	@posttask (completion_signal_func)

	

	
	@posttask (touch_file('task1.done'))

	

	

	@active_if (Summary / Manual)

	Switches tasks on and off at run time

	
	Evaluated each time you call

	
	pipeline_run(…),

	pipeline_printout(…) or

	pipeline_printout_graph(…)

	
	Dormant tasks behave as if they are :

	
	up to date and

	have no output.

	
	
	@active_if (on_or_off1, [on_or_off2, ...])

	

	

	@jobs_limit (Summary / Manual)

	Limits the amount of multiprocessing for the specified task

	Ensures that fewer than N jobs are run in parallel for this task

	Overrides multiprocess parameter in pipeline_run(…)

	
	
	@jobs_limit (NUMBER_OF_JOBS_RUNNING_CONCURRENTLY)

	

	

	@mkdir (Summary / Manual)

	Generates paths for os.makedirs [http://docs.python.org/2/library/os.html#os.makedirs]

	
	
	@mkdir (input, suffix() , output)

	

	
	@mkdir (input, regex() , output)

	

	
	@mkdir (input, formatter() , output)

	

	

	@graphviz (Summary / Manual)

	Customise the task graphics in
flowcharts from pipeline_printout_graph(…)

	
	
	@graphviz (graphviz_parameter = XXX, [graphviz_parameter2 = YYY ...])

	

	

Esoteric!

	Decorator

	Examples

	

	@files (Summary / Manual)

	I/O parameters

	skips up-to-date jobs

	Should use @transform etc instead

	
	
	@files(parameter_list)

	

	
	@files(parameter_generating_function)

	

	
	@files (input_file, output_file, other_params, …)

	

	

	@parallel (Summary / Manual)

	By default, does not check if jobs are up to date

	Best used in conjuction with @check_if_uptodate

	
	
	@parallel (parameter_list)

	

	
	@parallel (parameter_generating_function)

	

	

	@check_if_uptodate (Summary / Manual)

	Custom function to determine if jobs need to be run

	
	
	@check_if_uptodate (is_task_up_to_date_function)

	

	

	
Tip

	The use of this is discouraged.

	@files_re (Summary)

	I/O file names via regular
expressions

	start from lists of file names
or glob [http://docs.python.org/library/glob.html] results

	skips up-to-date jobs

	
	@files_re (input, matching_regex, [input_pattern,] output, ...)

	

See also

	@originate in the Ruffus Manual

	Decorators for more decorators

originate

@originate (output, [extras,…])

	Purpose:

	
	Creates (originates) a set of starting file without dependencies from scratch (ex nihilo!)

	Only called to create files which do not exist.

	Invoked onces (a job created) per item in the output list.

Note

The first argument for the task function is the output. There is by definition no
input for @originate

Example:

from ruffus import *
@originate(["a", "b", "c", "d"], "extra")
def test(output_file, extra):
 open(output_file, "w")

pipeline_run()

>>> pipeline_run()
 Job = [None -> a, extra] completed
 Job = [None -> b, extra] completed
 Job = [None -> c, extra] completed
 Job = [None -> d, extra] completed
Completed Task = test

>>> # all files exist: nothing to do
>>> pipeline_run()

>>> # delete 'a' so that it is missing
>>> import os
>>> os.unlink("a")

>>> pipeline_run()
 Job = [None -> a, extra] completed
Completed Task = test

Parameters:

	
	output = output

	
	Can be a single file name or a list of files

	Each item in the list is treated as the output of a separate job

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also

	@split in the Ruffus Manual

	Decorators for more decorators

split

@split (input, output, [extras,…])

	Purpose:

	
Splits a single set of input into multiple output, where the number of
output may not be known beforehand.

Only out of date tasks (comparing input and output files) will be run

Example:

@split("big_file", '*.little_files')
def split_big_to_small(input_file, output_files):
 print "input_file = %s" % input_file
 print "output_file = %s" % output_file

.

will produce:

input_file = big_file
output_file = *.little_files

Parameters:

	
	input = tasks_or_file_names

	can be a:

	(Nested) list of file name strings (as in the example above).

File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

E.g.:"a.*" => "a.1", "a.2"

	Task / list of tasks.

File names are taken from the output of the specified task(s)

	
	output = output

	Specifies the resulting output file name(s) after string substitution

Can include glob patterns (e.g. "*.txt")

These are used only to check if the task is up to date.

Normally you would use either a glob [http://docs.python.org/library/glob.html] (e.g. *.little_files as above) or a “sentinel file”
to indicate that the task has completed successfully.

You can of course do both:

@split("big_file", ["sentinel.file", "*.little_files"])
def split_big_to_small(input_file, output_files):
 pass

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

Warning

Deprecated since Ruffus v 2.5

@split(input, output, filter = regex(...), add_inputs(...) | inputs(...), [|extras|_,…]) is a synonym for @subdivide.

See also

	@transform in the Ruffus Manual

	Decorators for more decorators

transform

@transform(input, filter, output, [extras,…])

	Purpose:

	Applies the task function to transform data from input to output files.

Output file names are specified from input, i.e. from the output
of specified tasks, or a list of file names, or a glob [http://docs.python.org/library/glob.html] matching pattern.

String replacement occurs either through suffix matches via suffix or
the formatter or regex indicators.

Only out of date tasks (comparing input and output files) will be run

Simple Example

Transforms *.c to *.o:

@transform(input = ["1.c", "2.c"], filter = suffix(".c"), output = ".o")
def compile(infile, outfile):
 pass

Same example with a regular expression:

@transform(["1.c", "2.c"], regex(r".c$"), ".o")
def compile(infile, outfile):
 pass

Both result in the following function calls:

1.c -> 1.o
2.c -> 2.o
compile("1.c", "1.o")
compile("2.c", "2.o")

Escaping regular expression patterns

A string like universal.h in add_inputs will added as is.
r"\1.h", however, performs suffix substitution, with the special form r"\1" matching everything up to the suffix.
Remember to ‘escape’ r"\1" otherwise Ruffus will complain and throw an Exception to remind you.
The most convenient way is to use a python “raw” string.

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = suffix(suffix_string)

	must be wrapped in a suffix indicator object.
The end of each input file name which matches suffix_string will be replaced by output.

Input file names which do not match suffix_string will be ignored

The non-suffix part of the match can be referred to using the "\1" pattern. This
can be useful for putting the output in different directory, for example:

@transform(["1.c", "2.c"], suffix(".c"), r"my_path/\1.o")
def compile(infile, outfile):
 pass

This results in the following function calls:

1.c -> my_path/1.o
2.c -> my_path/2.o
compile("1.c", "my_path/1.o")
compile("2.c", "my_path/2.o")

For convenience and visual clarity, the "\1" can be omitted from the output parameter.
However, the "\1" is mandatory for string substitutions in additional parameters,

@transform(["1.c", "2.c"], suffix(".c"), [r"\1.o", ".o"], "Compiling \1", "verbatim")
def compile(infile, outfile):
 pass

Results in the following function calls:

compile("1.c", ["1.o", "1.o"], "Compiling 1", "verbatim")
compile("2.c", ["2.o", "2.o"], "Compiling 2", "verbatim")

Since r”1” is optional for the output parameter, "\1.o" and ".o" are equivalent.
However, strings in other parameters which do not contain r”1” will be included verbatim, much
like the string "verbatim" in the above example.

	
	filter = regex(matching_regex)

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax
Each output file name is created using regular expression substitution with output

	
	filter = formatter(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

If regex(matching_regex) or formatter(...)` is used, then substitution
is first applied to (even nested) string parameters. Other data types are passed
verbatim.

For example:

@transform(["a.c", "b.c"], regex(r"(.*).c"), r"\1.o", r"\1")
def compile(infile, outfile):
 pass

will result in the following function calls:

compile("a.c", "a.o", "a")
compile("b.c", "b.o", "b")

See here for more advanced uses of transform.

See also

	@merge in the Ruffus Manual

	Decorators for more decorators

merge

@merge (input, output, [extras,…])

	Purpose:

	Merges multiple input into a single output.

Only out of date tasks (comparing input and output files) will be run

Example:

@merge(previous_task, 'all.summary')
def summarize(infiles, summary_file):
 pass

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	output = output

	Specifies the resulting output file name(s).

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See here for more advanced uses of merging.

See also

	@subdivide in the Ruffus Manual

	Decorators for more decorators

subdivide

@subdivide (input, regex(matching_regex) | formatter(matching_formatter), [inputs (input_pattern_or_glob) | add_inputs (input_pattern_or_glob)], output, [extras,…])

Purpose:

	Subdivides a set of Inputs each further into multiple Outputs.

	Many to Even More operator

	The number of files in each Output can be set at runtime by the use of globs

	Output file names are specified using the formatter or regex indicators from input, i.e. from the output
of specified tasks, or a list of file names, or a glob [http://docs.python.org/library/glob.html] matching pattern.

	
	Additional inputs or dependencies can be added dynamically to the task:

	add_inputs nests the the original input parameters in a list before adding additional dependencies.

inputs replaces the original input parameters wholescale.

	Only out of date tasks (comparing input and output files) will be run.

Note

The use of split is a synonym for subdivide is deprecated.

Example:

from ruffus import *
from random import randint
from random import os

@originate(['0.start', '1.start', '2.start'])
def create_files(output_file):
 with open(output_file, "w"):
 pass

#
Subdivide each of 3 start files further into
[NNN1, NNN2, NNN3] number of files
where NNN1, NNN2, NNN3 are determined at run time
#
@subdivide(create_files, formatter(),
 # Output parameter: Glob matches any number of output file names
 "{path[0]}/{basename[0]}.*.step1",
 # Extra parameter: Append to this for output file names
 "{path[0]}/{basename[0]}")
def subdivide_files(input_file, output_files, output_file_name_root):
 #
 # IMPORTANT: cleanup rubbish from previous run first
 #
 for oo in output_files:
 os.unlink(oo)
 # The number of output files is decided at run time
 number_of_output_files = randint(2,4)
 for ii in range(number_of_output_files):
 output_file_name = "{output_file_name_root}.{ii}.step1".format(**locals())
 with open(output_file_name, "w"):
 pass

#
Each output of subdivide_files results in a separate job for downstream tasks
#
@transform(subdivide_files, suffix(".step1"), ".step2")
def analyse_files(input_file, output_file_name):
 with open(output_file_name, "w"):
 pass

pipeline_run()

>>> pipeline_run()
 Job = [None -> 0.start] completed
 Job = [None -> 1.start] completed
 Job = [None -> 2.start] completed
Completed Task = create_files
 Job = [0.start -> 0.*.step1, 0] completed
 Job = [1.start -> 1.*.step1, 1] completed
 Job = [2.start -> 2.*.step1, 2] completed
Completed Task = subdivide_files
 Job = [0.0.step1 -> 0.0.step2] completed
 Job = [0.1.step1 -> 0.1.step2] completed
 Job = [0.2.step1 -> 0.2.step2] completed
 Job = [1.0.step1 -> 1.0.step2] completed
 Job = [1.1.step1 -> 1.1.step2] completed
 Job = [1.2.step1 -> 1.2.step2] completed
 Job = [1.3.step1 -> 1.3.step2] completed
 Job = [2.0.step1 -> 2.0.step2] completed
 Job = [2.1.step1 -> 2.1.step2] completed
 Job = [2.2.step1 -> 2.2.step2] completed
 Job = [2.3.step1 -> 2.3.step2] completed
Completed Task = analyse_files

Parameters:

	
	tasks_or_file_names

	can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	matching_regex

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax

	
	matching_formatter

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	output = output

	Specifies the resulting output file name(s) after string substitution

Can include glob patterns.

	
	input_pattern

	Specifies the resulting input(s) to each job.
Must be wrapped in an inputs or an inputs indicator object.

Can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	(Nested) list of file name strings.

Strings are subject to regex or formatter substitution.

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

Strings are subject to regex or formatter
substitution.

See also

	@transform(.., add_inputs(…)| inputs(…), …) in the Ruffus Manual

	Decorators for more decorators

transform

@transform(input, filter, replace_inputs | add_inputs, output, [extras,…])

	Purpose:

	Applies the task function to transform data from input to output files.

This variant of @transform allows additional inputs or dependencies to be added
dynamically to the task.

Output file names are specified from input, i.e. from the output
of specified tasks, or a list of file names, or a glob [http://docs.python.org/library/glob.html] matching pattern.

This variant of @transform allows additional or replacement input file names to be derived in the same way.

String replacement occurs either through suffix matches via suffix or
the formatter or regex indicators.

It is a one to one operation.

add_inputs(…) nests the the original input parameters in a list before adding additional dependencies.

inputs(…) replaces the original input parameters wholescale.

Only out of date tasks (comparing input and output files) will be run

Example of add_inputs(…)

A common task in compiling C code is to include the corresponding header file for the source.

	To compile *.c to *.o, adding *.h and the common header universal.h:

	@transform(["1.c", "2.c"], suffix(".c"), add_inputs([r"\1.h", "universal.h"]), ".o")
def compile(infile, outfile):
 pass

	This will result in the following functional calls:

	compile(["1.c", "1.h", "universal.h"], "1.o")
compile(["2.c", "2.h", "universal.h"], "2.o")

Example of inputs(…)

inputs(…) allows the original input parameters to be replaced wholescale.

	This can be seen in the following example:

	@transform(input = [["1.c", "A.c", 2]
 ["2.c", "B.c", "C.c", 3]],
 filter = suffix(".c"),
 replace_inputs = inputs([r"\1.py", "docs.rst"]),
 output = ".pyc")
def compile(infile, outfile):
 pass

	This will result in the following functional calls:

	compile(["1.py", "docs.rst"], "1.pyc")
compile(["2.py", "docs.rst"], "2.pyc")

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = suffix(suffix_string)

	must be wrapped in a suffix indicator object.
The end of each input file name which matches suffix_string will be replaced by output.
Thus:

@transform(input = ["a.c", "b.c"],
 filter = suffix(".c"),
 output = ".o")
def compile(infile, outfile):
 pass

will result in the following function calls:

compile("a.c", "a.o")
compile("b.c", "b.o")

File names which do not match suffix_string will be ignored

	
	filter = regex(matching_regex)

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax
Each output file name is created using regular expression substitution with output

	
	filter = formatter(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	add_inputs = add_inputs(…) or replace_inputs = inputs(…)

	Specifies the resulting input(s) to each job.

Positional parameters must be disambiguated by wrapping the values in inputs(…) or an add_inputs(…).

Named parameters can be passed the values directly.

Takes:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	Strings will be subject to substitution.
File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].
E.g. "a.*" => "a.1", "a.2"

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

If the regex(...) or formatter(...) parameter is used, then substitution
is first applied to (even nested) string parameters. Other data types are passed
verbatim.

For example:

@transform(["a.c", "b.c"], regex(r"(.*).c"), inputs(r"\1.c", r"\1.h", "universal.h"), r"\1.o", r"\1")
def compile(infiles, outfile, file_name_root):
 # do something here
 pass

will result in the following function calls:

compile(["1.c", "1.h", "universal.h"], "1.o", "1")
compile(["2.c", "2.h", "universal.h"], "2.o", "2")

See here for more straightforward ways to use transform.

See also

	@collate in the Ruffus Manual

	Decorators for more decorators

collate

@collate(input, filter, output, [extras,…])

Purpose:

Use filter to identify common sets of inputs which are to be grouped or collated together:

Each set of inputs which generate identical output and extras using the
formatter or regex (regular expression)
filters are collated into one job.

This is a many to fewer operation.

Only out of date jobs (comparing input and output files) will be re-run.

	Example:

	regex(r".+\.(.+)$"), "\1.summary" creates a separate summary file for each suffix:

animal_files = "a.fish", "b.fish", "c.mammals", "d.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), r'\1.summary')
def summarize(infiles, summary_file):
 pass

	output and optional extras parameters are passed to the functions after string
substitution. Non-string values are passed through unchanged.

	Each collate job consists of input files which are aggregated by string substitution
to identical output and extras

	
The above example results in two jobs:

["a.fish", "b.fish" -> "fish.summary"]

["c.mammals", "d.mammals" -> "mammals.summary"]

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings (as in the example above).

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = matching_regex

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax

	
	filter = matching_formatter

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

Example2:

Suppose we had the following files:

cows.mammals.animal
horses.mammals.animal
sheep.mammals.animal

snake.reptile.animal
lizard.reptile.animal
crocodile.reptile.animal

pufferfish.fish.animal

and we wanted to end up with three different resulting output:

cow.mammals.animal
horse.mammals.animal
sheep.mammals.animal
 -> mammals.results

snake.reptile.animal
lizard.reptile.animal
crocodile.reptile.animal
 -> reptile.results

pufferfish.fish.animal
 -> fish.results

This is the @collate code required:

animals = ["cows.mammals.animal",
 "horses.mammals.animal",
 "sheep.mammals.animal",
 "snake.reptile.animal",
 "lizard.reptile.animal",
 "crocodile.reptile.animal",
 "pufferfish.fish.animal"]

@collate(animals, regex(r"(.+)\.(.+)\.animal"), r"\2.results")
\1 = species [cow, horse]
\2 = phylogenetics group [mammals, reptile, fish]
def summarize_animals_into_groups(species_file, result_file):
 " ... more code here"
 pass

See @merge for an alternative way to summarise files.

See also

	Use of add_inputs(…) | inputs(…) in the Ruffus Manual

collate(input, filter, replace_inputs | add_inputs, output, [extras,…])

	Purpose:

	Use filter to identify common sets of inputs which are to be grouped or collated together:

Each set of inputs which generate identical output and extras using the
formatter or regex (regular expression)
filters are collated into one job.

This variant of @collate allows additional inputs or dependencies to be added
dynamically to the task, with optional string substitution.

add_inputs nests the the original input parameters in a list before adding additional dependencies.

inputs replaces the original input parameters wholescale.

This is a many to fewer operation.

Only out of date jobs (comparing input and output files) will be re-run.

Example of add_inputs

regex(r".*(\..+)"), "\1.summary" creates a separate summary file for each suffix.
But we also add date of birth data for each species:

animal_files = "tuna.fish", "shark.fish", "dog.mammals", "cat.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), add_inputs(r"\1.date_of_birth"), r'\1.summary')
def summarize(infiles, summary_file):
 pass

This results in the following equivalent function calls:

summarize([["shark.fish", "fish.date_of_birth"],
 ["tuna.fish", "fish.date_of_birth"]], "fish.summary")
summarize([["cat.mammals", "mammals.date_of_birth"],
 ["dog.mammals", "mammals.date_of_birth"]], "mammals.summary")

Example of add_inputs

using inputs(...) will summarise only the dates of births for each species group:

animal_files = "tuna.fish", "shark.fish", "dog.mammals", "cat.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), inputs(r"\1.date_of_birth"), r'\1.summary')
def summarize(infiles, summary_file):
 pass

This results in the following equivalent function calls:

summarize(["fish.date_of_birth"], "fish.summary")
summarize(["mammals.date_of_birth"], "mammals.summary")

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings (as in the example above).

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = matching_regex

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax

	
	filter = matching_formatter

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	add_inputs = add_inputs(…) or replace_inputs = inputs(…)

	Specifies the resulting input(s) to each job.

Positional parameters must be disambiguated by wrapping the values in inputs(…) or an add_inputs(…).

Named parameters can be passed the values directly.

Takes:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	Strings will be subject to substitution.
File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].
E.g. "a.*" => "a.1", "a.2"

	
	output = output

	Specifies the resulting output file name(s).

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

See @collate for more straightforward ways to use collate.

See also

	@graphviz in the Ruffus Manual

	Decorators for more decorators

graphviz

@graphviz (graphviz_parameters,…])

Contributed by Sean Davis, with improved syntax via Jake Biesinger

	Purpose:

	Customise the graphic for each task in printed flowcharts by adding
graphviz attributes [http://www.graphviz.org/doc/info/attrs.html],
(URL, shape, colour) to that node.

	This allows HTML formatting in the task names (using the label parameter as in the following example).
HTML labels must be enclosed in < and >. E.g.

label = "<Line
 wrapped task_name()>"

	You can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

	The URL attribute allows the generation of clickable svg, and also client / server
side image maps usable in web pages.
See Graphviz documentation [http://www.graphviz.org/content/output-formats#dimap]

	Example:

	@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
 color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
 label_suffix = "???", label_prefix = "What is this?
 ",
 label = "<What isthis>",
 shape= "component", height = 1.5, peripheries = 5,
 style="dashed")
def Up_to_date_task2(infile, outfile):
 pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):
 pass

[image: ../_images/history_html_flowchart.png]

Parameters:

	named graphviz_parameters

Including among others:

	URL (e.g. "www.ruffus.org.uk")

	fillcolor

	color

	pencolor

	fontcolor

	label_suffix (appended to task name)

	label_prefix (precedes task name)

	label (replaces task name)

	shape (e.g. "component", "box", "diamond", "doubleoctagon" etc., see graphviz [http://www.graphviz.org/doc/info/shapes.html])

	height

	peripheries (Number of borders)

	style (e.g. "solid", "wedged", "dashed" etc., see graphviz [http://www.graphviz.org/doc/info/attrs.html#k:style])

Colours may specified as '"#FFCCCC"', 'red', 'red:blue', '/bugn9/7' etc. see color names [http://www.graphviz.org/doc/info/attrs.html#k:color] and colour schemes [http://www.graphviz.org/doc/info/colors.html]

See also

	@mkdir in the Ruffus Manual

	@follows(mkdir(“dir”)) specifies the creation of a single directory as a task pre-requisite.

	Decorators for more decorators

mkdir

@mkdir(input, filter, output)

Purpose:

	Prepares directories to receive Output files

	Used when Output path names are generated at runtime from Inputs. mkdir can make sure these runtime specified paths exist.

	Directory names are generated from Input using string substitution via formatter(), suffix() or regex().

	Behaves essentially like @transform but with its own (internal) function which does the actual work of making a directory

	Does not invoke the host task function to which it is attached

	Makes specified directories using os.makedirs [http://docs.python.org/2/library/os.html#os.makedirs]

	Multiple directories can be created in a list

Note

Only missing directories are created.

In other words, the same directory can be specified multiple times safely without, for example, being recreated repeatedly.

Sometimes, for pipelines with multiple entry points, this is the only way to make sure that certain working or output
directories are always created or available before the pipeline runs.

Simple Example

Creates multiple directories per job to hold the results of @transform

from ruffus import *

initial files
@originate(['A.start',
 'B.start'])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

create files without making directories -> ERROR
@transform(create_initial_files,
 formatter(),
 ["{path[0]}/{basename[0]}/processed.txt",
 "{path[0]}/{basename[0]}.tmp/tmp.processed.txt"])
def create_files_without_mkdir(input_file, output_files):
 open(output_files[0], "w")
 open(output_files[1], "w")

create files after making corresponding directories
@mkdir(create_initial_files,
 formatter(),
 ["{path[0]}/{basename[0]}", # create directory
 "{path[0]}/{basename[0]}.tmp"]) # create directory.tmp
@transform(create_initial_files,
 formatter(),
 ["{path[0]}/{basename[0]}/processed.txt",
 "{path[0]}/{basename[0]}.tmp/tmp.processed.txt"])
def create_files_with_mkdir(input_file, output_files):
 open(output_files[0], "w")
 open(output_files[1], "w")

pipeline_run([create_files_without_mkdir])
pipeline_run([create_files_with_mkdir])

Running without making the directories first gives errors:

>>> pipeline_run([create_files_without_mkdir])
 Job = [None -> A.start] completed
 Job = [None -> B.start] completed
Completed Task = create_initial_files

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 3738, in pipeline_run
 raise job_errors
 ruffus.ruffus_exceptions.RethrownJobError:

 Original exception:

>>> # Exception #1
>>> # 'exceptions.IOError([Errno 2] No such file or directory: 'A/processed.txt')' raised in ...
>>> # Task = def create_files_without_mkdir(...):
>>> # Job = [A.start -> [processed.txt, tmp.processed.txt]]

Running after making the directories first:

>>> pipeline_run([create_files_with_mkdir])
 Job = [None -> A.start] completed
 Job = [None -> B.start] completed
Completed Task = create_initial_files
 Make directories [A, A.tmp] completed
 Make directories [B, B.tmp] completed
Completed Task = (mkdir 1) before create_files_with_mkdir
 Job = [A.start -> [processed.txt, tmp.processed.txt]] completed
 Job = [B.start -> [processed.txt, tmp.processed.txt]] completed
Completed Task = create_files_with_mkdir

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = suffix(suffix_string)

	must be wrapped in a suffix indicator object.
The end of each input file name which matches suffix_string will be replaced by output.

Input file names which do not match suffix_string will be ignored

The non-suffix part of the match can be referred to using the r"\1" pattern. This
can be useful for putting the output in different directory, for example:

@mkdir(["1.c", "2.c"], suffix(".c"), r"my_path/\1.o")
def compile(infile, outfile):
 pass

This results in the following function calls:

1.c -> my_path/1.o
2.c -> my_path/2.o
compile("1.c", "my_path/1.o")
compile("2.c", "my_path/2.o")

For convenience and visual clarity, the "\1" can be omitted from the output parameter.
However, the "\1" is mandatory for string substitutions in additional parameters,

@mkdir(["1.c", "2.c"], suffix(".c"), [r"\1.o", ".o"], "Compiling \1", "verbatim")
def compile(infile, outfile):
 pass

Results in the following function calls:

compile("1.c", ["1.o", "1.o"], "Compiling 1", "verbatim")
compile("2.c", ["2.o", "2.o"], "Compiling 2", "verbatim")

Since r”1” is optional for the output parameter, "\1.o" and ".o" are equivalent.
However, strings in other parameters which do not contain r”1” will be included verbatim, much
like the string "verbatim" in the above example.

	
	filter = regex(matching_regex)

	is a python regular expression string, which must be wrapped in
a regex indicator object
See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax
Each output file name is created using regular expression substitution with output

	
	filter = formatter(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	output = output

	Specifies the directories to be created after string substitution

See also

	@jobs_limit in the Ruffus Manual

	Decorators for more decorators

jobs_limit

@jobs_limit (maximum_num_of_jobs, [name])

	Purpose:

	
Manages the resources available for a task.

Limits the number of concurrent jobs which can be run in parallel for this task

Overrides the value for multiprocess in pipeline_run

If an optional name is given, the same limit is shared across all tasks with the same @job_limit name.

Parameters:

	
	maximum_num_of_jobs

	The maximum number of concurrent jobs for this task. Must be an integer number
greater than or equal to 1.

	
	name

	Optional name for the limit. All tasks with the same name share the same limit if they
are running concurrently.

	Example

	from ruffus import *

make list of 10 files
@split(None, "*.stage1")
def make_files(input_file, output_files):
 for i in range(10):
 open("%d.stage1" % i, "w")

@jobs_limit(2)
@transform(make_files, suffix(".stage1"), ".stage2")
def stage1(input_file, output_file):
 open(output_file, "w")

@transform(stage1, suffix(".stage2"), ".stage3")
def stage2(input_file, output_file):
 open(output_file, "w")

pipeline_run([stage2], multiprocess = 5)

will run the 10 jobs of stage1 2 at a time, while `` stage2`` will
run 5 at a time (from multiprocess = 5):

[image: ../_images/jobs_limit.png]

See also

	@posttask in the Ruffus Manual

	Decorators for more decorators

posttask

@posttask (function | touch_file(file_name))

	Purpose:

	Calls functions to signal the completion of each task

Example:

from ruffus import *

def task_finished():
 print "hooray"

@posttask(task_finished)
@files(None, "a.1")
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

Parameters:

	
	function:

	function() will be called when the ruffus passes through a task.

This may happen even if all of the jobs are up-to-date:
when a upstream task is out-of-date, and the execution passes through
this point in the pipeline

	
	file_name

	Files to be touch-ed after the task is executed.

This will change the date/time stamp of the file_name to the current date/time.
If the file does not exist, an empty file will be created.

Requires to be wrapped in a touch_file indicator object:

from ruffus import *

@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

See also

	@active_if in the Ruffus Manual

	Decorators for more decorators

active_if

@active_if(on_or_off1, [on_or_off2,…])

Purpose:

	Switches tasks on and off at run time depending on its parameters

	Evaluated each time pipeline_run, pipeline_printout or pipeline_printout_graph is called.

	The Design and initial implementation were contributed by Jacob Biesinger

	Dormant tasks behave as if they are up to date and have no output.

Example:

from ruffus import *
run_if_true_1 = True
run_if_true_2 = False
run_if_true_3 = True

#
task1
#
@originate(['a.foo', 'b.foo'])
def create_files(outfile):
 """
 create_files
 """
 open(outfile, "w").write(outfile + "\n")

#
Only runs if all three run_if_true conditions are met
#
@active_if determines if task is active
@active_if(run_if_true_1, lambda: run_if_true_2)
@active_if(run_if_true_3)
@transform(create_files, suffix(".foo"), ".bar")
def this_task_might_be_inactive(infile, outfile):
 open(outfile, "w").write("%s -> %s\n" % (infile, outfile))

@active_if switches off task because run_if_true_2 == False
pipeline_run(verbose = 3)

@active_if switches on task because all run_if_true conditions are met
run_if_true_2 = True
pipeline_run(verbose = 3)

Produces the following output:

>>> # @active_if switches off task "this_task_might_be_inactive"
>>> # because run_if_true_2 == False
>>> pipeline_run(verbose = 3)

Task enters queue = create_files
create_files
 Job = [None -> a.foo] Missing file [a.foo]
 Job = [None -> b.foo] Missing file [b.foo]
 Job = [None -> a.foo] completed
 Job = [None -> b.foo] completed
Completed Task = create_files
Inactive Task = this_task_might_be_inactive

>>> # @active_if switches on task "this_task_might_be_inactive"
>>> # because all run_if_true conditions are met
>>> run_if_true_2 = True
>>> pipeline_run(verbose = 3)

Task enters queue = this_task_might_be_inactive

 Job = [a.foo -> a.bar] Missing file [a.bar]
 Job = [b.foo -> b.bar] Missing file [b.bar]
 Job = [a.foo -> a.bar] completed
 Job = [b.foo -> b.bar] completed
Completed Task = this_task_might_be_inactive

Parameters:

	
	on_or_off:

	A comma separated list of boolean conditions. These can be values, functions or callable objects which return True / False

Multiple @active_if decorators can be stacked for clarity as in the example

See also

	@follows in the Ruffus Manual

	Decorators for more decorators

Note

Only missing directories are created.

In other words, the same directory can be specified multiple times safely without, for example, being recreated repeatedly.
Sometimes, for pipelines with multiple entry points, this is the only way to make sure that certain working or output
directories are always created or available before the pipeline runs.

follows

@follows(task | “task_name” | mkdir (directory_name), [more_tasks, …])

Purpose:

Indicates either

	task dependencies

	that the task requires a directory to be created first if necessary. (Existing directories will not be overwritten)

Example:

def task1():
 print "doing task 1"

@follows(task1)
def task2():
 print "doing task 2"

Parameters:

	
	task:

	a list of tasks which have to be run before this function

	
	“task_name”:

	Dependencies can be quoted function names.
Quoted function names allow dependencies to be added before the function is defined.

Functions in other modules need to be fully qualified.

	
	directory_name:

	Directories which need to be created (only if they don’t exist) before
the task is run can be specified via a mkdir indicator object:

@follows(task_x, mkdir("/output/directory") ...)
def task():
 pass

See also

	@product in the Ruffus Manual

	Decorators for more decorators

product

@product(input, filter, [input2, filter2, …], output, [extras,…])

Purpose:

Generates the Cartesian product, i.e. all vs all comparisons, between multiple sets of input (e.g. A B C D, and X Y Z),

The effect is analogous to the python itertools [http://docs.python.org/2/library/itertools.html#itertools.product]
function of the same name, i.e. a nested for loop.

>>> from itertools import product
>>> # product('ABC', 'XYZ') --> AX AY AZ BX BY BZ CX CY CZ
>>> ["".join(a) for a in product('ABC', 'XYZ')]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

Only out of date tasks (comparing input and output files) will be run

output file names and strings in the extra parameters
are generated by string replacement via the formatter() filter
from the input. This can be, for example, a list of file names or the
output of up stream tasks.
.
The replacement strings require an extra level of nesting to refer to
parsed components.

	The first level refers to which set in each tuple of input.

	The second level refers to which input file in any particular set of input.

This will be clear in the following example:

Example:

Calculates the @product of A,B and P,Q and X, Y files

If input is three sets of file names

 set1 = ['a.start', # 0
 'b.start'])

 set2 = ['p.start', # 1
 'q.start'])

 set3 = [['x.1_start', 'x.2_start'], # 2
 ['y.1_start', 'y.2_start']]

The first job of:

@product(input = set1, filter = formatter(),
 input2 = set2, filter2 = formatter(),
 input3 = set2, filter3 = formatter(),
 ...)

Will be

One from each set
['a.start']
versus
['p.start']
versus
['x.1_start', 'x.2_start'],

	First level of nesting (one list of files from each set):

	['a.start'] # [0]
['p.start'] # [1]
['x.1_start', 'x.2_start'], # [2]

	Second level of nesting (one file):

	'a.start' # [0][0]
'p.start' # [1][0]
'x.1_start' # [2][0]

	Parse filename without suffix

	'a' # {basename[0][0]}
'p' # {basename[1][0]}
'x' # {basename[2][0]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):
 with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):
 with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
 ['y.1_start', 'y.2_start']])
def create_initial_files_xy(output_files):
 for o in output_files:
 with open(o, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input
 formatter("(.start)$"), # match input file set # 1

 create_initial_files_pq, # Input
 formatter("(.start)$"), # match input file set # 2

 create_initial_files_xy, # Input
 formatter("(.start)$"), # match input file set # 3

 "{path[0][0]}/" # Output Replacement string
 "{basename[0][0]}_vs_" #
 "{basename[1][0]}_vs_" #
 "{basename[2][0]}.product", #

 # Extra parameter: path for
 "{path[0][0]}", # 1st set of files, 1st file name

 # Extra parameter: basename for
 ["{basename[0][0]}", # 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def product_task(input_file, output_parameter, shared_path, basenames):
 print "# basenames = ", " ".join(basenames)
 print "input_parameter = ", input_file
 print "output_parameter = ", output_parameter, "\n"

#
Run
#
#pipeline_printout(verbose=6)
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = formater(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

Additional input and filter as needed:

	input2 = tasks_or_file_names

	filter2 = formater(…)

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also

	@permutations in the Ruffus Manual

	Decorators for more decorators

permutations

@permutations(input, filter, tuple_size, output, [extras,…])

Purpose:

Generates the permutations, between all the elements of a set of input (e.g. A B C D),

The effect is analogous to the python itertools [http://docs.python.org/2/library/itertools.html#itertools.permutations]
function of the same name:

>>> from itertools import permutations
>>> # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
>>> ["".join(a) for a in permutations("ABCD", 2)]
['AB', 'AC', 'AD', 'BA', 'BC', 'BD', 'CA', 'CB', 'CD', 'DA', 'DB', 'DC']

Only out of date tasks (comparing input and output files) will be run

output file names and strings in the extra parameters
are generated by string replacement via the formatter() filter
from the input. This can be, for example, a list of file names or the
output of up stream tasks.
.
The replacement strings require an extra level of nesting to refer to
parsed components.

	The first level refers to which set in each tuple of input.

	The second level refers to which input file in any particular set of input.

This will be clear in the following example:

Example:

Calculate the @permutations of A,B,C,D files

If input is four pairs of file names

 input_files = [['A.1_start', 'A.2_start'], # 0
 ['B.1_start', 'B.2_start'], # 1
 ['C.1_start', 'C.2_start'], # 2
 ['D.1_start', 'D.2_start']] # 3

The first job of:

@permutations(input_files, formatter(), 2, ...)

Will be

Two file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus
['B.1_start', 'B.2_start'], # 1

	First level of nesting:

	['A.1_start', 'A.2_start'] # [0]
['B.1_start', 'B.2_start'] # [1]

	Second level of nesting:

	'A.2_start' # [0][1]
'B.2_start' # [1][1]

	Parse filename without suffix

	'A' # {basename[0][1]}
'B' # {basename[1][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.permutations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter: basename for
 ["{basename[0][0]}", # 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
])
def permutations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = formater(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	tuple_size = N

	Select N elements at a time.

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also

	@combinations in the Ruffus Manual

	Decorators for more decorators

combinations

@combinations(input, filter, tuple_size, output, [extras,…])

Purpose:

Generates the combinations, between all the elements of a set of input (e.g. A B C D),
i.e. r-length tuples of input elements with no repeated elements (not A A)
and where order of the tuples is irrelevant (either A B or B A, not both).

The effect is analogous to the python itertools [http://docs.python.org/2/library/itertools.html#itertools.combinations]
function of the same name:

>>> from itertools import combinations
>>> # combinations('ABCD', 3) --> ABC ABD ACD BCD
>>> ["".join(a) for a in combinations("ABCD", 3)]
['ABC', 'ABD', 'ACD', 'BCD']

Only out of date tasks (comparing input and output files) will be run

output file names and strings in the extra parameters
are generated by string replacement via the formatter() filter
from the input. This can be, for example, a list of file names or the
output of up stream tasks.
.
The replacement strings require an extra level of nesting to refer to
parsed components.

	The first level refers to which set in each tuple of input.

	The second level refers to which input file in any particular set of input.

This will be clear in the following example:

Example:

Calculate the @combinations of A,B,C,D files

If input is four pairs of file names

 input_files = [['A.1_start', 'A.2_start'], # 0
 ['B.1_start', 'B.2_start'], # 1
 ['C.1_start', 'C.2_start'], # 2
 ['D.1_start', 'D.2_start']] # 3

The first job of:

@combinations(input_files, formatter(), 3, ...)

Will be

Three file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus
['B.1_start', 'B.2_start'], # 1
versus
['C.1_start', 'c.2_start'], # 2

	First level of nesting:

	['A.1_start', 'A.2_start'] # [0]
['B.1_start', 'B.2_start'] # [1]
['C.1_start', 'C.2_start'] # [2]

	Second level of nesting:

	'A.2_start' # [0][1]
'B.2_start' # [1][1]
'C.2_start' # [2][1]

	Parse filename without suffix

	'A' # {basename[0][1]}
'B' # {basename[1][1]}
'C' # {basename[2][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 3 at a time
 3,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}_vs_"
 "{basename[2][1]}.combinations",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter, basename for:
 ["{basename[0][0]}", # 1st set of files, 1st file name
 "{basename[1][0]}", # 2nd
 "{basename[2][0]}", # 3rd
])
def combinations_task(input_file, output_parameter, shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = formater(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	tuple_size = N

	Select N elements at a time.

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also

	@combinations_with_replacement in the Ruffus Manual

	Decorators for more decorators

combinations_with_replacement

@combinations_with_replacement(input, filter, tuple_size, output, [extras,…])

Purpose:

Generates the combinations_with_replacement, between all the elements of a set of input (e.g. A B C D),
i.e. r-length tuples of input elements with no repeated elements (A A)
and where order of the tuples is irrelevant (either A B or B A, not both).

The effect is analogous to the python itertools [http://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement]
function of the same name:

>>> from itertools import combinations_with_replacement
>>> # combinations_with_replacement('ABCD', 2)
>>> # --> AA AB AC AD BB BC BD CC CD DD
>>> ["".join(a) for a in combinations_with_replacement('ABCD', 2)]
['AA', 'AB', 'AC', 'AD', 'BB', 'BC', 'BD', 'CC', 'CD', 'DD']

Only out of date tasks (comparing input and output files) will be run

output file names and strings in the extra parameters
are generated by string replacement via the formatter() filter
from the input. This can be, for example, a list of file names or the
output of up stream tasks.
.
The replacement strings require an extra level of nesting to refer to
parsed components.

	The first level refers to which set in each tuple of input.

	The second level refers to which input file in any particular set of input.

This will be clear in the following example:

Example:

If input is four pairs of file names

 input_files = [['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']]

The first job of:

@combinations_with_replacement(input_files, formatter(), 3, ...)

Will be

Two file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus itself
['A.1_start', 'A.2_start'], # 1

	First level of nesting:

	['A.1_start', 'A.2_start'] # [0]
['A.1_start', 'A.2_start'] # [1]

	Second level of nesting:

	'A.2_start' # [0][1]
'A.2_start' # [1][1]

	Parse filename without suffix

	'A' # {basename[0][1]}
'A' # {basename[1][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],
 ['B.1_start', 'B.2_start'],
 ['C.1_start', 'C.2_start'],
 ['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input
 formatter(), # match input files

 # tuple of 2 at a time
 2,

 # Output Replacement string
 "{path[0][0]}/"
 "{basename[0][1]}_vs_"
 "{basename[1][1]}.combinations_with_replacement",

 # Extra parameter: path for 1st set of files, 1st file name
 "{path[0][0]}",

 # Extra parameter. Basename for:
 ["{basename[0][0]}", # 1st set of files, 1st file name
 "{basename[1][0]}", # 2rd
])
def combinations_with_replacement_task(input_file, output_parameter,
 shared_path, basenames):
 print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

Parameters:

	
	input = tasks_or_file_names

	can be a:

	
	Task / list of tasks.

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html].

	E.g.:"a.*" => "a.1", "a.2"

	
	filter = formater(…)

	a formatter indicator object containing optionally
a python regular expression (re) [http://docs.python.org/library/re.html].

	
	tuple_size = N

	Select N elements at a time.

	
	output = output

	Specifies the resulting output file name(s) after string substitution

	
	extras = extras

	Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]

Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also

	@files in the Ruffus Manual

	Decorators for more decorators

Parameters on the fly with @files

@files (custom_function)

Purpose:

Uses a custom function to generate sets of parameters to separate jobs which can run in parallel.

The first two parameters in each set represent the input and output which are
used to see if the job is out of date and needs to be (re-)run.

By default, out of date checking uses input/output file timestamps.
(On some file systems, timestamps have a resolution in seconds.)
See @check_if_uptodate() for alternatives.

	Example:

	from ruffus import *
def generate_parameters_on_the_fly():
 parameters = [
 ['input_file1', 'output_file1', 1, 2], # 1st job
 ['input_file2', 'output_file2', 3, 4], # 2nd job
 ['input_file3', 'output_file3', 5, 6], # 3rd job
]
 for job_parameters in parameters:
 yield job_parameters

@files(generate_parameters_on_the_fly)
def parallel_io_task(input_file, output_file, param1, param2):
 pass

pipeline_run([parallel_task])

	is the equivalent of calling:

	parallel_io_task('input_file1', 'output_file1', 1, 2)
parallel_io_task('input_file2', 'output_file2', 3, 4)
parallel_io_task('input_file3', 'output_file3', 5, 6)

Parameters:

	
	custom_function:

	Generator function which yields each time a complete set of parameters for one job

	Checking if jobs are up to date:

	Strings in input and output (including in nested sequences) are interpreted as file names and
used to check if jobs are up-to-date.

See above for more details

See also

	@check_if_uptodate in the Ruffus Manual

	Decorators for more decorators

check_if_uptodate

@check_if_uptodate (dependency_checking_function)

	Purpose:

	Checks to see if a job is up to date, and needs to be run.

Usually used in conjunction with @parallel()

Example:

from ruffus import *
import os
def check_file_exists(input_file, output_file):
 if not os.path.exists(output_file):
 return True, "Missing file %s" % output_file
 else:
 return False, "File %s exists" % output_file

@parallel([[None, "a.1"]])
@check_if_uptodate(check_file_exists)
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

Is equivalent to:

from ruffus import *
@files(None, "a.1")
def create_if_necessary(input_file, output_file):
 open(output_file, "w")

pipeline_run([create_if_necessary])

Both produce the same output:

Task = create_if_necessary
 Job = [null, "a.1"] completed

Parameters:

	
	dependency_checking_function:

	returns two parameters: if job needs to be run, and a message explaining why

dependency_checking_func() needs to handle the same number of parameters as the
task function e.g. input_file and output_file above.

See also

	@parallel in the Ruffus Manual

	Decorators for more decorators

parallel

@parallel ([[job_params, …], [job_params, …]…] | parameter_generating_function)

	Purpose:

	To apply the (task) function to a set of parameters in parallel without file dependency checking.

Most useful allied to @check_if_uptodate()

Example:

from ruffus import *
parameters = [
 ['A', 1, 2], # 1st job
 ['B', 3, 4], # 2nd job
 ['C', 5, 6], # 3rd job
]
@parallel(parameters)
def parallel_task(name, param1, param2):
 sys.stderr.write(" Parallel task %s: " % name)
 sys.stderr.write("%d + %d = %d\\n" % (param1, param2, param1 + param2))

pipeline_run([parallel_task])

Parameters:

	
	job_params:

	Requires a sequence of parameters, one set for each job.

Each set of parameters can be one or more items in a sequence which will be passed to
the decorated task function iteratively (or in parallel)

For example:

parameters = [
 ['A', 1, 2], # 1st job
 ['B', 3, 4], # 2nd job
 ['C', 5, 6], # 3rd job
]
@parallel(parameters)
def parallel_task(name, param1, param2):
 pass

Will result in the following function calls:

parallel_task('A', 1, 2)
parallel_task('B', 3, 4)
parallel_task('C', 5, 6)

	
	parameter_generating_function

	
	A generator yielding set of parameters (as above) in turn and on the fly

	A function returning a sequence of parameter sets, as above

See also

	@files (deprecated) in the Ruffus Manual

	Decorators for more decorators

files

@files (input1, output1, [extra_parameters1, …])

@files for single jobs

	Purpose:

	Provides parameters to run a task.

The first two parameters in each set represent the input and output which are
used to see if the job is out of date and needs to be (re-)run.

By default, out of date checking uses input/output file timestamps.
(On some file systems, timestamps have a resolution in seconds.)
See @check_if_uptodate() for alternatives.

	Example:

	from ruffus import *
@files('a.1', 'a.2', 'A file')
def transform_files(infile, outfile, text):
 pass
pipeline_run([transform_files])

	If a.2 is missing or was created before a.1, then the following will be called:

	transform_files('a.1', 'a.2', 'A file')

Parameters:

	
	input

	Input file names

	
	output

	Output file names

	
	extra_parameters

	optional extra_parameters are passed verbatim to each job.

	Checking if jobs are up to date:

	Strings in input and output (including in nested sequences) are interpreted as file names and
used to check if jobs are up-to-date.

See above for more details

@files (((input, output, [extra_parameters,…]), (…), …))

@files in parallel

Purpose:

Passes each set of parameters to separate jobs which can run in parallel

The first two parameters in each set represent the input and output which are
used to see if the job is out of date and needs to be (re-)run.

By default, out of date checking uses input/output file timestamps.
(On some file systems, timestamps have a resolution in seconds.)
See @check_if_uptodate() for alternatives.

	Example:

	from ruffus import *
parameters = [
 ['a.1', 'a.2', 'A file'], # 1st job
 ['b.1', 'b.2', 'B file'], # 2nd job
]

@files(parameters)
def parallel_io_task(infile, outfile, text):
 pass
pipeline_run([parallel_io_task])

	is the equivalent of calling:

	parallel_io_task('a.1', 'a.2', 'A file')
parallel_io_task('b.1', 'b.2', 'B file')

Parameters:

	
	input

	Input file names

	
	output

	Output file names

	
	extra_parameters

	optional extra_parameters are passed verbatim to each job.

	Checking if jobs are up to date:

	
	Strings in input and output (including in nested sequences) are interpreted as file names and
used to check if jobs are up-to-date.

	In the absence of input files (e.g. input is None), the job will run if any output file is missing.

	In the absence of output files (e.g. output is None), the job will always run.

	If any of the output files is missing, the job will run.

	If any of the input files is missing when the job is run, a
MissingInputFileError exception will be raised.

See also

	Decorators for more decorators

@files_re

@files_re (tasks_or_file_names, matching_regex, [input_pattern], output_pattern, [extra_parameters,…])

Legacy design now deprecated. We suggest using @transform() instead

Purpose:

All singing, all dancing decorator which can do everything that @merge() and
@transform() can do.

Applies the task function to transform data from input to output files.

Output file names are determined from tasks_or_file_names, i.e. from the output
of specified tasks, or a list of file names, using regular expression pattern substitutions.

Only out of date tasks (comparing input and output files) will be run.

	Example:

	from ruffus import *
#
convert all files ending in ".1" into files ending in ".2"
#
@files_re('*.1', '(.*).1', r'\1.2')
def transform_func(infile, outfile):
 open(outfile, "w").write(open(infile).read() + "\nconverted\n")

pipeline_run([task_re])

	If the following files are present a.1, b.1, c.1, this will result in the following function calls:

	transform_func("a.1", "a.2")
transform_func("b.1", "b.2")
transform_func("c.1", "c.2")

Parameters:

	
	tasks_or_file_names

	can be a:

	
	Task / list of tasks (as in the example above).

	File names are taken from the output of the specified task(s)

	
	(Nested) list of file name strings.

	
	File names containing *[]? will be expanded as a glob [http://docs.python.org/library/glob.html] .

	E.g.:"a.*" => "a.1", "a.2"

	
	matching_regex

	a python regular expression string.

See python regular expression (re) [http://docs.python.org/library/re.html] documentation for details of regular expression syntax

Each output file name is created using regular expression substitution with output_pattern

	
	input_pattern

	Optionally specifies the resulting input file name(s).

	
	output_pattern

	Specifies the resulting output file name(s).

	
	[extra_parameters, …]

	Any extra parameters are passed to the task function.

Regular expression substitution is first applied to (even nested) string parameters.

Other data types are passed verbatim.

	For example:

	from ruffus import *
#
convert all files ending in ".1" into files ending in ".2"
#
@files_re('*.1', '(.*).1', r'\1.2', [r'\1', 55], 17)
def transform_func(infile, outfile, extras, extra3):
 extra1, extra2 = extras
 open(outfile, "w").write(open(infile).read() + "\nconverted%s\n" % (extra1, extra2, extra3))

pipeline_run([transform_func])

	If the following files are present a.1, b.1, c.1, this will result in the following function calls:

	transform_func("a.1", "a.2", ["a", 55], 17)
transform_func("b.1", "b.2", ["b", 55], 17)
transform_func("c.1", "c.2", ["c", 55], 17)

See also

	Decorators

	suffix(…) in the Ruffus Manual

	regex(…) in the Ruffus Manual

	formatter(…) in the Ruffus Manual

Indicator Objects

How ruffus disambiguates certain parameters to decorators.

They are like keyword arguments [http://docs.python.org/tutorial/controlflow.html#keyword-arguments] in python, a little more verbose but they make the syntax much simpler.

Indicator objects are also “self-documenting” so you can see
exactly what is happening clearly.

formatter

formatter([regex | None , regex | None…])

	The optional enclosed parameters are a python regular expression strings

	Each regular expression matches a corresponding Input file name string

	formatter parses each file name string into path and regular expression components

	Parsing fails altogether if the regular expression is not matched

Path components include:

	basename: The base name [http://docs.python.org/2/library/os.path.html#os.path.basename] excluding extension [http://docs.python.org/2/library/os.path.html#os.path.splitext], "file.name"

	ext : The extension [http://docs.python.org/2/library/os.path.html#os.path.splitext], ".ext"

	path : The dirname [http://docs.python.org/2/library/os.path.html#os.path.dirname], "/directory/to/a"

	subdir : A list of sub-directories in the path in reverse order, ["a", "to", "directory", "/"]

	subpath : A list of descending sub-paths in reverse order, ["/directory/to/a", "/directory/to", "/directory", "/"]

The replacement string refers to these components using python string.format [http://docs.python.org/2/library/string.html#string-formatting] style curly braces. {NAME}

We refer to an element from the Nth input string by index, for example:

	"{ext[0]}" is the extension of the first input string.

	"{basename[1]}" is the basename of the second input string.

	"{basename[1][0:3]}" are the first three letters from the basename of the second input string.

	Used by:

	
	@split

	@transform

	@merge

	@subdivide

	@collate

	@product

	@permutations

	@combinations

	@combinations_with_replacement

@transform example:

from ruffus import *

create initial file pairs
@originate([['job1.a.start', 'job1.b.start'],
 ['job2.a.start', 'job2.b.start'],
 ['job3.a.start', 'job3.c.start']])
def create_initial_file_pairs(output_files):
 for output_file in output_files:
 with open(output_file, "w") as oo: pass

#---
#
formatter
#
@transform(create_initial_file_pairs, # Input

 formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
 ".+/job[123].b.start"), # Match only "b" files

 ["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
 "{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"])
def first_task(input_files, output_parameters):
 print "input_parameters = ", input_files
 print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

This produces:

input_parameters = ['job1.a.start',
 'job1.b.start']
output_parameters = ['/home/lg/src/temp/jobs1.output.a.1',
 '/home/lg/src/temp/jobs1.output.b.1', 45]

input_parameters = ['job2.a.start',
 'job2.b.start']
output_parameters = ['/home/lg/src/temp/jobs2.output.a.1',
 '/home/lg/src/temp/jobs2.output.b.1', 45]

@permutations example:

Combinatoric decorators such as @product or
@product behave much
like nested for loops in enumerating, combining, and permutating the original sets
of inputs.

The replacement strings require an extra level of indirection to refer to
parsed components:

from ruffus import *
from ruffus.combinatorics import *

create initial files
@originate(['a.start', 'b.start', 'c.start'])
def create_initial_files(output_file):
 with open(output_file, "w") as oo: pass

#---
#
formatter
#
@permutations(create_initial_files, # Input

 formatter("(.start)$"), # match input file in permutations
 2,

 "{path[0][0]}/"
 "{basename[0][0]}_"
 "vs_{basename[1][0]}"
 ".product", # Output Replacement string
 "{path[0][0]}", # path for 1st set of files, 1st file name
 ["{basename[0][0]}", # basename for 1st set of files, 1st file name
 "{basename[1][0]}"]) # basename for 2nd set of files, 1st file name
def product_task(input_file, output_parameter, shared_path, basenames):
 print "input_parameter = ", input_file
 print "output_parameter = ", output_parameter
 print "shared_path = ", shared_path
 print "basenames = ", basenames

#
Run
#
pipeline_run(verbose=0)

This produces:

>>> pipeline_run(verbose=0)
input_parameter = ('a.start', 'b.start')
output_parameter = /home/lg/src/oss/ruffus/a_vs_b.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['a', 'b']

input_parameter = ('a.start', 'c.start')
output_parameter = /home/lg/src/oss/ruffus/a_vs_c.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['a', 'c']

input_parameter = ('b.start', 'a.start')
output_parameter = /home/lg/src/oss/ruffus/b_vs_a.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['b', 'a']

input_parameter = ('b.start', 'c.start')
output_parameter = /home/lg/src/oss/ruffus/b_vs_c.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['b', 'c']

input_parameter = ('c.start', 'a.start')
output_parameter = /home/lg/src/oss/ruffus/c_vs_a.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['c', 'a']

input_parameter = ('c.start', 'b.start')
output_parameter = /home/lg/src/oss/ruffus/c_vs_b.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['c', 'b']

suffix

suffix(string)

The enclosed parameter is a string which must match exactly to the end
of a file name.

	Used by:

	
	@transform

	Example:

	#
Transforms ``*.c`` to ``*.o``::
#
@transform(previous_task, suffix(".c"), ".o")
def compile(infile, outfile):
 pass

regex

regex(regular_expression)

The enclosed parameter is a python regular expression string,
which must be wrapped in a regex indicator object.

See python regular expression (re) [http://docs.python.org/library/re.html]
documentation for details of regular expression syntax

Used by:

	@transform

	@subdivide

	@collate

	The deprecated @files_re

	Example:

	@transform(previous_task, regex(r".c$"), ".o")
def compile(infile, outfile):
 pass

add_inputs

add_inputs(input_file_pattern)

The enclosed parameter(s) are pattern strings or a nested structure which is added to the
input for each job.

	Used by:

	
	@transform

	@collate

	@subdivide

Example @transform with suffix(…)

A common task in compiling C code is to include the corresponding header file for the source.
To compile *.c to *.o, adding *.h and the common header universal.h:

@transform(["1.c", "2.c"], suffix(".c"), add_inputs([r"\1.h", "universal.h"]), ".o")
def compile(infile, outfile):
 # do something here
 pass

The starting files names are 1.c and 2.c.

suffix(".c") matches “.c” so \1 stands for the unmatched prefices "1" and "2"

	This will result in the following functional calls:

	compile(["1.c", "1.h", "universal.h"], "1.o")
compile(["2.c", "2.h", "universal.h"], "2.o")

A string like universal.h in add_inputs will added as is.
r"\1.h", however, performs suffix substitution, with the special form r"\1" matching everything up to the suffix.
Remember to ‘escape’ r"\1" otherwise Ruffus will complain and throw an Exception to remind you.
The most convenient way is to use a python “raw” string.

Example of add_inputs(…) with regex(…)

	The suffix match (suffix(...)) is exactly equivalent to the following code using regular expression (regex(...)):

	@transform(["1.c", "2.c"], regex(r"^(.+)\.c$"),
 add_inputs([r"\1.h", "universal.h"]), r"\1.o")
def compile(infile, outfile):
 # do something here
 pass

The suffix(..) code is much simpler but the regular expression allows more complex substitutions.

add_inputs(…) preserves original inputs

add_inputs nests the the original input parameters in a list before adding additional dependencies.

	This can be seen in the following example:

	@transform([["1.c", "A.c", 2]
 ["2.c", "B.c", "C.c", 3]],
 suffix(".c"), add_inputs([r"\1.h", "universal.h"]),
 ".o")
def compile(infile, outfile):
 # do something here
 pass

	This will result in the following functional calls:

	compile([["1.c", "A.c", 2], "1.h", "universal.h"], "1.o")
compile([["3.c", "B.c", "C.c", 3], "2.h", "universal.h"], "2.o")

The original parameters are retained unchanged as the first item in a list

inputs

inputs(input_file_pattern)

	Used by:

	
	@transform

	@collate

	@subdivide

The enclosed single parameter is a pattern string or a nested structure which is
used to construct the input for each job.

If more than one argument is supplied to inputs, an exception will be raised.

Use a tuple or list (as in the following example) to send multiple input arguments to each job.

	Used by:

	
	The advanced form of @transform

inputs(…) replaces original inputs

inputs(...) allows the original input parameters to be replaced wholescale.

	This can be seen in the following example:

	@transform([["1.c", "A.c", 2]
 ["2.c", "B.c", "C.c", 3]],
 suffix(".c"), inputs([r"\1.py", "docs.rst"]), ".pyc")
def compile(infile, outfile):
 # do something here
 pass

	This will result in the following functional calls:

	compile(["1.py", "docs.rst"], "1.pyc")
compile(["2.py", "docs.rst"], "2.pyc")

In this example, the corresponding python files have been sneakily substituted
without trace in the place of the C source files.

mkdir

mkdir(directory_name1 , [directory_name2 , …])

The enclosed parameter is a directory name or a sequence of directory names.
These directories will be created as part of the prerequisites of running a task.

	Used by:

	
	@follows

	Example:

	@follows(mkdir("/output/directory"))
def task():
 pass

touch_file

touch_file(file_name)

The enclosed parameter is a file name. This file will be touch-ed after a
task is executed.

This will change the date/time stamp of the file_name to the current date/time.
If the file does not exist, an empty file will be created.

	Used by:

	
	@posttask

	Example:

	@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def do_task(input_file, output_file):
 pass

output_from

output_from (file_name_string1 [, file_name_string1 , …])

Indicates that any enclosed strings are not file names but refer to task functions.

	Used by:

	
	@split

	@transform

	@merge

	@collate

	@subdivide

	@product

	@permutations

	@combinations

	@combinations_with_replacement

	@files

	Example:

	@split(["a.file", ("b.file", output_from("task1", 76, "task2"))], "*.split")
def task2(input, output):
 pass

is equivalent to:

@split(["a.file", ("b.file", (task1, 76, task2))], "*.split")
def task2(input, output):
 pass

combine

combine(arguments)

Warning

This is deprecated syntax.

Please do not use!

@merge and @collate are more powerful
and have straightforward syntax.

Indicates that the inputs of @files_re will be collated
or summarised into outputs by category. See the Manual or
:ref:` @collate <new_manual.collate>` for examples.

	Used by:

	
	@files_re

	Example:

	@files_re('*.animals', # inputs = all *.animal files
 r'mammals.([^.]+)', # regular expression
 combine(r'\1/animals.in_my_zoo'), # single output file per species
 r'\1') # species name
def capture_mammals(infiles, outfile, species):
 # summarise all animals of this species
 ""

Design & Architecture

The ruffus module has the following design goals:

	Simplicity.

	Intuitive

	Lightweight

	Unintrusive

	Flexible/Powerful

Computational pipelines, especially in science, are best thought of in terms of data
flowing through successive, dependent stages (ruffus calls these tasks).
Traditionally, files have been used to
link pipelined stages together. This means that computational pipelines can be managed
using traditional software construction (build) systems.

GNU Make

The grand-daddy of these is UNIX make [http://en.wikipedia.org/wiki/Make_(software)].
GNU make [http://www.gnu.org/software/make/] is ubiquitous in the linux world for
installing and compiling software.
It has been widely used to build computational pipelines because it supports:

	Stopping and restarting computational processes

	Running multiple, even thousands of jobs in parallel

Deficiencies of make / gmake

However, make and GNU make [http://www.gnu.org/software/make/] use a much criticised
specialised (domain-specific) language. The make language has poor support for modern
programming languages features such as variable scope, pattern matching, debugging.
Make scripts require large amounts of often obscure shell scripting
and makefiles can quickly become unmaintainable.

Scons, Rake and other Make alternatives

Many attempts have been made to produce a more modern version of make, with less of its
historical baggage. These include the Java-based Apache ant [http://ant.apache.org/] which is specified in xml.

More interesting are a new breed of build systems whose scripts are written in modern programming
languages, rather than a specially-invented “build” specification syntax.
These include the Python scons [http://www.scons.org/], Ruby rake [http://rake.rubyforge.org/] and
its python port Smithy [http://packages.python.org/Smithy/].

The great advantages are that computation pipelines do not need to be artificially divided
between (the often second-class) workflow management code, and the logic of real calculations and work
in the pipeline. It also means that workflow management can use all the standard language and library
features, for example, to read directories and match file names using regular expressions.

Ruffus is much like scons in that the modern dynamic programming language python is used seamlessly
throughout its pipeline scripts.

Implicit dependencies: disadvantages of make / scons / rake

Although Python scons [http://www.scons.org/] and Ruby rake [http://rake.rubyforge.org/]
are in many ways more powerful and easier to use for building software, they are still an
imperfect fit to the world of computational pipelines.

This is a result of the way dependencies are specified, an essential part of their design inherited
from GNU make [http://www.gnu.org/software/make/].

The order of operations in all of these tools is specified in a declarative rather than
imperative manner. This means that the sequence of steps that a build should take are
not spelled out explicity and directly. Instead recipes are provided for turning input files
of each type to another.

So, for example, knowing that a->b, b->c, c->d, the build
system can infer how to get from a to d by performing the necessary operations in the correct order.

	This is immensely powerful for three reasons:

	
	The plumbing, such as dependency checking, passing output
from one stage to another, are handled automatically by the build system. (This is the whole point!)

	The same recipe can be re-used at different points in the build.

	Intermediate files do not need to be retained.

Given the automatic inference that a->b->c->d,
we don’t need to keep b and c files around once d has been produced.

The disadvantage is that because stages are specified only indirectly, in terms of
file name matches, the flow through a complex build or a pipeline can be difficult to trace, and nigh
impossible to debug when there are problems.

Explicit dependencies in Ruffus

Ruffus takes a different approach. The order of operations is specified explicitly rather than inferred
indirectly from the input and output types. So, for example, we would explicitly specify three successive and
linked operations a->b, b->c, c->d. The build system knows that the operations always proceed in
this order.

Looking at a Ruffus script, it is always clear immediately what is the succession of computational steps
which will be taken.

Ruffus values clarity over syntactic cleverness.

Static dependencies: What make / scons / rake can’t do (easily)

GNU make [http://www.gnu.org/software/make/], scons [http://www.scons.org/] and rake [http://rake.rubyforge.org/]
work by infer a static dependency (diacyclic) graph between all the files which
are used by a computational pipeline. These tools locate the target that they are supposed
to build and work backward through the dependency graph from that target,
rebuilding anything that is out of date.This is perfect for building software,
where the list of files data files can be computed statically at the beginning of the build.

This is not ideal matches for scientific computational pipelines because:

	
Though the stages of a pipeline (i.e. compile or DNA alignment) are
invariably well-specified in advance, the number of
operations (jobs) involved at each stage may not be.

	
A common approach is to break up large data sets into manageable chunks which
can be operated on in parallel in computational clusters or farms
(See embarassingly parallel problems [http://en.wikipedia.org/wiki/Embarrassingly_parallel]).

This means that the number of parallel operations or jobs varies with the data (the number of manageable chunks),
and dependency trees cannot be calculated statically beforehand.

Computational pipelines require dynamic dependencies which are not calculated up-front, but
at each stage of the pipeline

This is a known issue with traditional build systems each of which has partial strategies to work around
this problem:

	gmake always builds the dependencies when first invoked, so dynamic dependencies require (complex!) recursive calls to gmake

	Rake dependencies unknown prior to running tasks [http://objectmix.com/ruby/759716-rake-dependencies-unknown-prior-running-tasks-2.html].

	Scons: Using a Source Generator to Add Targets Dynamically [http://www.scons.org/wiki/DynamicSourceGenerator]

Ruffus explicitly and straightforwardly handles tasks which produce an indeterminate (i.e. runtime dependent)
number of output, using a split / transform / merge idiom.

Managing pipelines stage-by-stage using Ruffus

Ruffus manages pipeline stages directly.

	
The computational operations for each stage of the pipeline are written by you, in
separate python functions.

(These correspond to gmake pattern rules [http://www.gnu.org/software/make/manual/make.html#Pattern-Rules])

	
The dependencies between pipeline stages (python functions) are specified up-front.

These can be displayed as a flow chart.

[image: _images/front_page_flowchart.png]

	Ruffus makes sure pipeline stage functions are called in the right order,
with the right parameters, running in parallel using multiprocessing if necessary.

	Checkpointing automatically determines if all or any parts
of the pipeline are out-of-date and need to be rerun.

	Separate pipeline stages, and operations within each pipeline stage,
can be run in parallel provided they are not inter-dependent.

Another way of looking at this is that ruffus re-constructs datafile dependencies dynamically
on-the-fly when it gets to each stage of the pipeline, giving much more flexibility.

Disadvantages of the Ruffus design

Are there any disadvantages to this trade-off for additional clarity?

	Each pipeline stage needs to take the right input and output. For example if we specified the
steps in the wrong order: a->b, c->d, b->c, then no useful output would be produced.

	We cannot re-use the same recipes in different parts of the pipeline

	Intermediate files need to be retained.

In our experience, it is always obvious when pipeline operations are in the wrong order, precisely because the
order of computation is the very essense of the design of each pipeline. Ruffus produces extra diagnostics when
no output is created in a pipeline stage (usually happens for incorrectly specified regular expressions.)

Re-use of recipes is as simple as an extra call to common function code.

Finally, some users have proposed future enhancements to Ruffus to handle unnecessary temporary / intermediate files.

Alternatives to Ruffus

A comparison of more make-like tools is available from Ian Holmes’ group [http://biowiki.org/MakeComparison].

Build systems include:

	GNU make [http://www.gnu.org/software/make/]

	scons [http://www.scons.org/]

	ant [http://ant.apache.org/]

	rake [http://rake.rubyforge.org/]

There are also complete workload managements systems such as Condor.
Various bioinformatics pipelines are also available, including that used by the
leading genome annotation website Ensembl, Pegasys, GPIPE, Taverna, Wildfire, MOWserv,
Triana, Cyrille2 etc. These all are either hardwired to specific databases, and tasks,
or have steep learning curves for both the scientist/developer and the IT system
administrators.

Ruffus is designed to be lightweight and unintrusive enough to use for writing pipelines
with just 10 lines of code.

See also

Bioinformatics workload managements systems

	Condor:

	http://www.cs.wisc.edu/condor/description.html

	Ensembl Analysis pipeline:

	http://www.ncbi.nlm.nih.gov/pubmed/15123589

	Pegasys:

	http://www.ncbi.nlm.nih.gov/pubmed/15096276

	GPIPE:

	http://www.biomedcentral.com/pubmed/15096276

	Taverna:

	http://www.ncbi.nlm.nih.gov/pubmed/15201187

	Wildfire:

	http://www.biomedcentral.com/pubmed/15788106

	MOWserv:

	http://www.biomedcentral.com/pubmed/16257987

	Triana:

	http://dx.doi.org/10.1007/s10723-005-9007-3

	Cyrille2:

	http://www.biomedcentral.com/1471-2105/9/96

Acknowledgements

	Bruce Eckel’s insightful article on
A Decorator Based Build System [http://www.artima.com/weblogs/viewpost.jsp?thread=241209]
was the obvious inspiration for the use of decorators in Ruffus.

	The rest of the Ruffus takes uses a different approach. In particular:

	
	Ruffus uses task-based not file-based dependencies

	Ruffus tries to have minimal impact on the functions it decorates.

Bruce Eckel’s design wraps functions in “rule” objects.

Ruffus tasks are added as attributes of the functions which can be still be
called normally. This is how Ruffus decorators can be layered in any order
onto the same task.

	Languages like c++ and Java would probably use a “mixin” approach.
Python’s easy support for reflection and function references,
as well as the necessity of marshalling over process boundaries, dictated the
internal architecture of Ruffus.

	The Boost Graph library [http://www.boost.org] for text book implementations of directed
graph traversals.

	Graphviz [http://www.graphviz.org/]. Just works. Wonderful.

	Andreas Heger, Christoffer Nellåker and Grant Belgard for driving Ruffus towards
ever simpler syntax.

Implementation Tips

Release

	Change ruffus_version.py

	Rebuild pdf and copy it to doc/static_data

cd doc
make latexpdf
cp _build/latex/ruffus.pdf static_data

	Rebuild documentation:

make htmlsync

	Check passes Travis

	tag git with, for example:

git tag -a v2.6.3 -m "Version 2.6.3"

	Upload to pypi:

python setup.py sdist --format=gztar upload

	Upload to repository:

git push googlecode
git push

blogger

.article-content h2 {color: #ad3a2b}
.article-content h3 {color: #0100b4}
 #header .header-bar .title h1
 {
 background-image: url('http://www.ruffus.org.uk/_static/small_logo.png');
 background-repeat: no-repeat;
 background-position: left;
 }

dbdict.py

This is an sqlite backed dictionary originally written by Jacob Sondergaard and
contributed by Jake Biesinger who added automatic pickling of python objects.

The pickling code was refactored out by Leo Goodstadt into separate functions as
part of the preparation to make Ruffus python3 ready.

Python original saved (pickled) objects as 7 bit ASCII strings. Later formats
(protocol = -1 is the latest format) uses 8 bit strings and are rather more efficient.

These then need to be saved as BLOBs to sqlite3 rather than normal strings. We
can signal this by wrapping the pickled string in a object providing a “buffer interface”.
This is buffer in python2.6/2.7 and memoryview in python3.

http://bugs.python.org/issue7723 suggests there is no portable python2/3 way to write
blobs to Sqlite without these two incompatible wrappers.
This would require conditional compilation:

if sys.hexversion >= 0x03000000:
 value = memoryview(pickle.dumps(value, protocol = -1))
else:
 value = buffer(pickle.dumps(value, protocol = -1))

Despite the discussion on the bug report, sqlite3.Binary seems to work.
We shall see if this is portable to python3.

how to write new decorators

New placeholder class. E.g. for @new_deco

class new_deco(task_decorator):
 pass

Add to list of action names and ids:

action_names = ["unspecified",
 ...
 "task_new_deco",

action_task_new_deco = 15

Add function:

def task_transform (self, orig_args):

Add documentation to:

	decorators/NEW_DECORATOR.rst

	decorators/decorators.rst

	_templates/layout.html

	manual

Implementation notes

N.B. Remember to cite Jake Biesinger and see if he is interested to be a co-author if we ever resubmit the drastically changed version…
He contributed checkpointing, travis and tox etc.

Ctrl-C handling

Pressing Ctrl-C left dangling process in Ruffus 2.4 because KeyboardInterrupt does not play nice with python multiprocessing.Pool
See http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool/1408476#1408476

http://bryceboe.com/2012/02/14/python-multiprocessing-pool-and-keyboardinterrupt-revisited/ provides a reimplementation of Pool which
however only works when you have a fixed number of jobs which should then run in parallel to completion. Ruffus is considerably more
complicated because we have a variable number of jobs completing and being submitted into the job queue at any one time. Think
of tasks stalling waiting for the dependent tasks to complete and then all the jobs of the task being released onto the queue

The solution is

	Use a timeout parameter when using IMapIterator.next(timeout=None) to iterate through pool.imap_unordered because only timed condition s can be interruptible by signals…!!

	This involves rewriting the for loop manually as a while loop

	We use a timeout of 99999999, i.e. 3 years, which should be enough for any job to complete…

	Googling after the fact, it looks like the galaxy guys (cool dudes or what) have written similar code [https://galaxy-dist.readthedocs.org/en/latest/_modules/galaxy/objectstore/s3_multipart_upload.html]

	next() for normal iterators do not take timeout as an extra parameter so we have to wrap next in a conditional :-(. The galaxy guys do a shim [http://en.wikipedia.org/wiki/Shim_(computing)] around next() but that is as much obsfucation as a simple if…

	After jobs are interrupted by a signal, we rethrow with our own exception because we want something that inherits from Exception unlike KeyboardInterrupt

	When a signal happens, we need to immediately stop feed_job_params_to_process_pool() from sending more parameters into the job queue (parameter_q)
We use a proxy to a multiprocessing.Event (via syncmanager.Event()). When death_event is set, all further processing stops…

	We also signal that all jobs should finish by putting all_tasks_complete() into parameter_q but only death_event prevents jobs already in the queue from going through

	Ater signalling, some of the child processes appear to be dead by the time we start cleaning up. pool.terminate() sometimes tries and fails to
re-connect to the the death_event proxy via sockets and throws an exception. We should really figure out a better solution but in the meantime
wrapping it in a try / except allows a clean exit.

	If a vanilla exception is raised without multiprocessing running, we still need to first save the exception in job_errors (even if it is just one) before
cleaning up, because the cleaning up process may lead to further (ignored) exceptions which would overwrite the current exception when we need to rethrow it

Exceptions thrown in the middle of a multiprocessing / multithreading job appear to be handled gracefully.

For drmaa jobs, qdel may still be necessary.

Python3 compatability

Required extensive changes especially in unit test code.

Changes:

	sort in python3 does not order mixed types, i.e. int(), list() and str() are incommensurate

	In task.get_output_files (...), sort after conversion to string

sorted(self.output_filenames, key = lambda x: str(x))

	In file_name_parameters.py: collate_param_factory (...), sort after conversion to string, then groupby without string conversion. This is
because we can’t guarantee that two different objects do not have the same string representation. But groupby requires that similar things are adjacent…

In other words, groupby is a refinement of sorted

for output_extra_params, grouped_params in groupby(sorted(io_params_iter, key = get_output_extras_str), key = get_output_extras):
 pass

	print() is a function

from __future__ import print_function

	items() only returns a list in python2. Rewrite dict.iteritems() whenever this might cause a performance bottleneck

	zip and map return iterators. Conditionally import in python2

import sys
if sys.hexversion < 0x03000000:
 from future_builtins import zip, map

	cPickle->pickle CStringIO->io need to be conditionally imported

try:
 import StringIO as io
except:
 import io as io

	map code can be changed to list comprehensions. Use 2to3 to do heavy lifting

	All normal strings are unicode in python3. Have to use bytes to support 8-bit char arrays.
Normally, this means that str “just works”. However, to provide special handling of
both 8-bit and unicode strings in python2, we often need to check for isinstance(xxx, basestring).

We need to conditionally define:

if sys.hexversion >= 0x03000000:
 # everything is unicode in python3
 path_str_type = str
else:
 path_str_type = basestring

further down...
if isinstance(compiled_regex, path_str_type):
 pass

Refactoring: parameter handling

	Though the code is still split in a not very sensible way between ruffus_utility.py, file_name_parameters.py and task.py,

	some rationalisation has taken place, and comments added so further refactoring can be made more easily.

Common code for:

file_name_parameters.split_ex_param_factory()
file_name_parameters.transform_param_factory()
file_name_parameters.collate_param_factory()

has been moved to file_name_parameters.py.yield_io_params_per_job()

unit tests added to test_file_name_parameters.py and test_ruffus_utility.py

formatter

get_all_paths_components(paths, regex_str) in ruffus_utility.py

Input files names are first squished into a flat list of files.
get_all_paths_components() returns both the regular expression matches and the break down of the path.

In case of name clashes, the classes with higher priority override:

	Captures by name

	Captures by index

	
	Path components:

	‘ext’ = extension with dot
‘basename’ = file name without extension
‘path’ = path before basename, not ending with slash
‘subdir’ = list of directories starting with the most nested and ending with the root (if normalised)
‘subpath’ = list of ‘path’ with successive directories removed starting with the most nested and ending with the root (if normalised)

E.g. name = '/a/b/c/sample1.bam', formatter=r"(.*)(?P<id>\d+)\.(.+)") returns:

0: '/a/b/c/sample1.bam', // Entire match captured by index
1: '/a/b/c/sample', // captured by index
2: 'bam', // captured by index
'id': '1' // captured by name
'ext': '.bam',
'subdir': ['c', 'b', 'a', '/'],
'subpath': ['/a/b/c', '/a/b', '/a', '/'],
'path': '/a/b/c',
'basename': 'sample1',

The code is in ruffus_utility.py:

results = get_all_paths_components(paths, regex_str)
string.format(results[2])

All the magic is hidden inside black boxes filename_transform classes:

class t_suffix_filename_transform(t_filename_transform):
class t_regex_filename_transform(t_filename_transform):
class t_format_filename_transform(t_filename_transform):

formatter(): regex() and suffix()

The previous behaviour with regex() where mismatches fail even if no substitution is made is retained by the use of re.subn().
This is a corner case but I didn’t want user code to break

filter on ".txt"
input_filenames = ["a.wrong", "b.txt"]
regex("(.txt)$")

fails, no substitution possible
r"\1"

fails anyway even through regular expression matches not referenced...
r"output.filename"

@product()

	Use combinatoric generators from itertools and keep that naming scheme

	Put all new generators in an combinatorics submodule namespace to avoid breaking user code. (They can imported if necessary.)

	test code in test/test_combinatorics.py

	The itertools.product(repeat) parameter doesn’t make sense for Ruffus and will not be used

	Flexible number of pairs of task / glob / file names + formatter()

	Only formatter([OPTIONAl_REGEX]) provides the necessary flexibility to construct the output so we won’t bother with suffix and regex

	Similar to @transform but with extra level of nested-ness

	Retain same code for @product and @transform by adding an additional level of indirection:

	
	generator wrap around get_strings_in_nested_sequence to convert nested input parameters either to a single flat list of file names or to nested lists of file names

file_name_parameters.input_param_to_file_name_list (input_params)
file_name_parameters.list_input_param_to_file_name_list (input_params)

	t_file_names_transform class which stores a list of regular expressions, one for each formatter() object corresponding to a single set of input parameters

t_formatter_file_names_transform
t_nested_formatter_file_names_transform

	string substitution functions which will apply a list of formatter changes

ruffus.utility.t_formatter_replace()
ruffus.utility.t_nested_formatter_replace()

	ruffus_uilility.swap_doubly_nested_order() makes the syntax / implementation very orthogonal

@permutations(...), @combinations(...), @combinations_with_replacement(...)

Similar to @product extra level of nested-ness is self versus self

	Retain same code for @product

	
	forward to a sinble file_name_parameters.combinatorics_param_factory()

	use combinatorics_type to dispatch to combinatorics.permutations, combinatorics.combinations and combinatorics.combinations_with_replacement

	use list_input_param_to_file_name_list from file_name_parameters.product_param_factory()

drmaa alternatives

Alternative, non-drmaa polling code at

https://github.com/bjpop/rubra/blob/master/rubra/cluster_job.py

Task completion monitoring

How easy is it to abstract out the database?

	
	The database is Jacob Sondergaard’s dbdict which is a nosql / key-value store wrapper around sqlite

	job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)

	The key is the output file name, so it is important not to confuse Ruffus by having different tasks generate the same output file!

	Is it possible to abstract this so that jobs get timestamped as well?

	If we should ever want to abstract out dbdict, we need to have a similar key-value store class,
and make sure that a single instance of dbdict is used through pipeline_run which is passed up
and down the function call chain. dbdict would then be drop-in replaceable by our custom (e.g. flat-file-based) dbdict alternative.

To peek into the database:

$ sqlite3 .ruffus_history.sqlite
sqlite> .tables
data
sqlite> .schema data
CREATE TABLE data (key PRIMARY KEY,value);
sqlite> select key from data order by key;

Can we query the database, get Job history / stats?

Yes, if we write a function to read and dump the entire database but this is only useful with timestamps and task names. See below

What are the run time performance implications?

Should be fast: a single db connection is created and used inside pipeline_run, pipeline_printout, pipeline_printout_graph

Avoid pauses between tasks

Allows Ruffus to avoid adding an extra 1 second pause between tasks to guard against file systems with low timestamp granularity.

	If the local file time looks to be in sync with the underlying file system, saved system time is used instead of file timestamps

@mkdir(...),

	mkdir continues to work seamlessly inside @follows but also as its own decorator @mkdir due to the original happy orthogonal design

	fixed bug in checking so that Ruffus does’t blow up if non strings are in the output (number…)

	note: adding the decorator to a previously undecorated function might have unintended consequences. The undecorated function turns into a zombie.

	fixed ugly bug in pipeline_printout for printing single line output

	fixed description and printout indent

Parameter handling

Current design

Parameters in Ruffus v 2.x are obtained using a “pull” model.

Each task has its self.param_generator_func()
This is an iterator function which yields param and descriptive_param per iteration:

 for param, descriptive_param in self.param_generator_func(runtime_data):
 pass

``param`` and ``descriptive_param`` are basically the same except that globs are not expanded in ``descriptive_param`` because
they are used for display.

The iterator functions have all the state they need to generate their input, output and extra parameters
(only runtime_data) is added at run time.
These closures are generated as nested functions inside “factory” functions defined in file_name_parameters.py

Each task type has its own factory function. For example:

args_param_factory (orig_args)
files_param_factory (input_files_task_globs, flatten_input, do_not_expand_single_job_tasks, output_extras)
split_param_factory (input_files_task_globs, output_files_task_globs, *extra_params)
merge_param_factory (input_files_task_globs, output_param, *extra_params)
originate_param_factory (list_output_files_task_globs, extras)

The following factory files delegate most of their work to yield_io_params_per_job:

to support:

	inputs(), add_inputs() input parameter supplementing

	extra inputs, outputs, extra parameter replacement with suffix(), regex() and formatter

collate_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
transform_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
combinatorics_param_factory (input_files_task_globs, flatten_input, combinatorics_type, k_tuple, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
subdivide_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_files_task_globs, *extra_specs)
product_param_factory (list_input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)

yield_io_params_per_job (input_params, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, extra_specs, runtime_data, iterator, expand_globs_in_output = False):

	The first thing they do is to get a list of input parameters, either directly, or by expanding globs or by query upstream tasks:

file_names_from_tasks_globs(files_task_globs, runtime_data, do_not_expand_single_job_tasks = True_if_split_or_merge)

Note

True_if_split_or_merge is a wierd parameter which directly queries the upstream dependency for its output files if it is a single task…

This is legacy code. Probably should be refactored out of existence…

	They then convert the input parameters to a flattened list of file names (passing through unchanged the original input parameters structure)

input_param_to_file_name_list()
combinatorics and product call:
list_input_param_to_file_name_list()

This is done at the iterator level because the combinatorics decorators do not have just a
list of input parameters (They have combinations, permutations, products of
input parameters etc) but a list of lists of input parameters.

transform, collate, subdivide => list of strings.
combinatorics / product => list of lists of strings

	yield_io_params_per_job yields pairs of param sets by

	Replacing or supplementing input parameters for the indicator objects inputs() and add_inputs()

	Expanding extra parameters

	Expanding output parameters (with or without expanding globs)

	In each case:

	
	If these contains objects which look like strings, we do regular expression / file component substitution

	If they contain tasks, these are queries for output files

Note

This should be changed:

If the flattened list of input file names is empty, ie. if the input parameters
contain just other stuff, then the entire parameter is ignored.

Handling file names

All strings in input (or output parameters) are treated as file names unless they are wrapped
with output_from in which case they are Task, Pipeline or function names.

A list of strings for ready for substitution to output parameters is obtained from the
ruffus_utility.get_strings_in_flattened_sequence()

This is called from:

file_name_parameters

	Either to check that input files exist:
check_input_files_exist()
needs_update_check_directory_missing()
needs_update_check_exist()
needs_update_check_modify_time()

	Or to generate parameters from the various param factories

product_param_factory()
transform_param_factory()
collate_param_factory()
combinatorics_param_factory()
subdivide_param_factory()

These first call file_names_from_tasks_globs() to get the input parameters,
then pass a flattened list of strings to yield_io_params_per_job()

-> file_names_from_tasks_globs()
-> yield_io_params_per_job(input_param_to_file_name_list() / list_input_param_to_file_name_list())

task

	to obtain a list of file names to touch

job_wrapper_io_files

	to make directories

job_wrapper_mkdir

	update / remove files in job_history if job succeeded or failed

pipeline_run

Refactor to handle input parameter objects with ruffus_params() functions

We want to expand objects with ruffus_params only when doing output parameter
substitution, i.e. Case (2) above. They are not file names: cases (1), (3), (4), (5).

Therefore: Expand in file_names_from_tasks_globs() which also handles
inputs() and add_inputs and @split outputs.

Refactor to handle formatter() replacement with “{EXTRAS[0][1][3]}” and “[INPUTS[1][2]]”

Non-recursive Substitution in all:

construct new list where each item is replaced referring to the original and then assign

extra_inputs() “[INPUTS[1][2]]” refers to the original input
output / extras “[INPUTS[1][2]]” refers to substituted input

In addition to the flattened input paramters, we need to pass in the unflattened input and extra parameters

In file_name_parameters.py.: yield_io_params_per_job

From:
.. code-block:: python

extra_inputs = extra_input_files_task_globs.file_names_transformed (filenames, file_names_transform)
extra_params = tuple(file_names_transform.substitute(filenames, p) for p in extra_specs)
output_pattern_transformed = output_pattern.file_names_transformed (filenames, file_names_transform)
output_param = file_names_transform.substitute_output_files(filenames, output_pattern)

To:
.. code-block:: python

extra_inputs = extra_input_files_task_globs.file_names_transformed (orig_input_param, extra_specs, filenames, file_names_transform)
extra_params = tuple(file_names_transform.substitute(input_param, extra_specs, filenames, p) for p in extra_specs)
output_pattern_transformed = output_pattern.file_names_transformed (input_param, extra_specs, filenames, file_names_transform)
output_param = file_names_transform.substitute_output_files(input_param, extra_specs, filenames, output_pattern)

In other words, we need two extra parameters for inputs and extras

class t_file_names_transform(object):
 def substitute (self, input_param, extra_param, starting_file_names, pattern):
 pass
 def substitute_output_files (self, input_param, extra_param, starting_file_names, pattern):
 pass

class t_params_tasks_globs_run_time_data(object):
 def file_names_transformed (self, input_param, extra_param, filenames, file_names_transform):
 pass

Refactor to handle alternative outputs with either_or(…,…)

	what happens to get_outputs or checkpointing when the job completes but the output files are not made?

	either_or matches

	the only alternative to have all files existing

	the alternative with the most recent file

	either_or behaves as list() in file_name_parameters.py. : file_names_from_tasks_globs

	Handled to check that input files exist:

check_input_files_exist()
needs_update_check_directory_missing()
needs_update_check_exist()
needs_update_check_modify_time()

	Handled to update / remove files in job_history if job succeeded or failed

	Only first either_or is used to obtain list of file names to touch

task.job_wrapper_io_files

	Only first either_or is used to obtain list of file names to make directories

job_wrapper_mkdir

	What happens in task.get_output_files()?

Add Object Orientated interface

Passed Unit tests

	Refactored to remove unused “flattened” code paths / parameters

	Prefix all attributes for Task into underscore so that help(Task) is not overloaded with details

	
	Named parameters

	
	parse named parameters in order filling in from unnamed

	save parameters in dict Task.parsed_args

	
	call setup_task_func() afterwards which knows how to setup:

	
	poor man’s OOP but

	allows type to be changed after constructor:
Because can’t guarantee that @transform @merge is the first Ruffus decorator to be encountered.

	setup_task_func() is called for every task before pipeline_xxx()

	Much more informative messages for errors when parsing decorator arguments

	Pipeline decorator methods renamed to decorator_xxx as in decorator_follows

	Task.get_task_name()
* rename to Task.get_display_name()
* distinguish between decorator and OO interface

	Rename _task to Task

	
	Identifying tasks from t_job_result:

	
	job results do not contain references to Task so that it can be marshalled more easily

	we need to look up task at job completion

	use _node_index from graph.py so we have always a unique identifier for each Task

	
	Parse arguments using ruffus_utility.parse_task_arguments

	
	Reveals full hackiness and inconsistency between add_inputs and inputs. The latter only takes a single argument. Each of the elements of the former gets added along side the existing inputs.

	Add Pipeline class
* Create global called "main" (accessed by Pipeline.pipelines[“main”])

	
	Task name lookup

	
	Task names are unique (Otherwise Ruffus will complain at Task creation)

	Can also lookup by fully qualified or unqualified function name but these can be ambiguous

	Ambiguous lookups give a list of tasks only so we can have nice diagnostic messages … UI trumps clean design

	Look up strings across pipelines
#. Is pipeline name qualified? Check that
#. Check default (current) pipeline
#. Check if pipeline name. In which case returns all tail functions
#. Check all pipelines

	Will blow up at any instance of ambiguity in any particular pipeline

	Will blow up at any instance of ambiguity across pipelines

	Note that mis-spellings will cause problems but if this were c++, I would enforce stricter checking

	Look up functions across pipelines
* Try current pipeline first, then all pipelines
* Will blow up at any instance of ambiguity in any particular pipeline
* Will blow up at any instance of ambiguity across pipelines (if not in current pipeline)

	@mkdir, @follows(mkdir)

	Pipeline.get_head_tasks(self) (including tasks with mkdir())

	Pipeline.get_tail_tasks(self)

	Pipeline._complete_task_setup() which follows chain of dependencies for each task in a pipeline

Pipeline and Task creation

	Share code as far as possible between decorator and OOP syntax

	Cannot use textbook OOP inheritance hierarchy easily because @decorators are not necessarily
given in order.

Pipeline.transform
 _do_create_task_by_OOP()

@transform
 Pipeline._create_task()
 task._decorator_transform

 task._prepare_transform()
 self.setup_task_func = self._transform_setup
 parse_task_arguments

Pipeline.run
 pipeline._complete_task_setup()
 # walk up ancestors of all task and call setup_task_func
 unprocessed_tasks = Pipeline.tasks
 while len(unprocessed_tasks):
 ancestral_tasks = setup_task_func()
 if not already processed:
 unprocessed_tasks.append(ancestral_tasks)

 Call _complete_task_setup() for all the pipelines of each task

Connecting Task into a DAG

task._complete_setup()
 task._remove_all_parents()
 task._deferred_connect_parents()
 task._setup_task_func()
 task._handle_tasks_globs_in_inputs()
 task._connect_parents()
 # re-lookup task from names in current pipeline so that pipeline.clone() works

	Task dependencies are normally deferred and saved to Task.deferred_follow_params

	If Task dependencies call for a new Task (follows/follows(mkdir)), this takes place
immediately

	The parameters in Task.deferred_follow_params are updated with the created Task when
this happens

	Task._prepare_preceding_mkdir() has a defer flag to prevent it from updating
Task.deferred_follow_params when it is called to resolve deferred dependencies from
Task._connect_parents(). Otherwise we will have two copies of each deferred dependency…

	Task.deferred_follow_params must be deep-copied otherwise cloned pipelines will interfere
with each other when dependencies are resolved…

Cheat Sheet

The ruffus module is a lightweight way to add support
for running computational pipelines.

Each stage or task in a computational pipeline is represented by a python function

Each python function can be called in parallel to run multiple jobs.

1. Annotate functions with Ruffus decorators

Core

	Decorator

	Syntax

	

	@originate (Manual)

	@originate (output_files, [extra_parameters,…])

	

	@split (Manual)

	@split (tasks_or_file_names, output_files, [extra_parameters,…])

	

	@transform (Manual)

	
@transform (tasks_or_file_names, suffix(suffix_string), output_pattern, [extra_parameters,…])

@transform (tasks_or_file_names, regex(regex_pattern), output_pattern, [extra_parameters,…])

	

	@merge (Manual)

	@merge (tasks_or_file_names, output, [extra_parameters,…])

	

	@posttask (Manual)

	
@posttask (signal_task_completion_function)

@posttask (touch_file('task1.completed'))

	

See Decorators for a complete list of decorators

2. Print dependency graph if necessary

	For a graphical flowchart in jpg, svg, dot, png, ps, gif formats:

pipeline_printout_graph ("flowchart.svg")

	For a text printout of all jobs

pipeline_printout()

3. Run the pipeline

pipeline_run(multiprocess = N_PARALLEL_JOBS)

Glossary

	task

	A stage in a computational pipeline.

Each task in ruffus is represented by a python function.

For example, a task might be to find the products of a sets of two numbers:

4 x 5 = 20
5 x 6 = 30
2 x 7 = 14

	job

	Any number of operations which can be run in parallel and make up
the work in a stage of a computional pipeline.

Each task in ruffus is a separate call to the task function.

For example, if a task is to find products of numbers, each of these will be a separate job.

Job1:

4 x 5 = 20

Job2:

5 x 6 = 30

Job3:

2 x 7 = 14

Jobs need not complete in order.

	decorator

	Ruffus decorators allow functions to be incorporated into a computational
pipeline, with automatic generation of parameters, dependency checking etc.,
without modifying any code within the function.
Quoting from the python wiki [http://wiki.python.org/moin/PythonDecorators]:

A Python decorator is a specific change to the Python syntax that
allows us to more conveniently alter functions and methods.

Decorators dynamically alter the functionality of a function, method, or
class without having to directly use subclasses or change the source code
of the function being decorated.

	generator

	python generators are new to python 2.2
(see Charming Python: Iterators and simple generators [http://www.ibm.com/developerworks/library/l-pycon.html]).
They allow iterable data to be generated on the fly.

Ruffus asks for generators when you want to generate job parameters dynamically.

Each set of job parameters is returned by the yield keyword for
greater clarity. For example,:

def generate_job_parameters():

 for file_index, file_name in iterate(all_file_names):

 # parameter for each job
 yield file_index, file_name

Each job takes the parameters file_index and file_name

ruffus.Task

Decorators

Basic Task decorators are:

@follows()

and

@files()

Task decorators include:

@split()

@transform()

@merge()

@posttask()

More advanced users may require:

@transform()

@collate()

@parallel()

@check_if_uptodate()

@files_re()

Pipeline functions

pipeline_run

	
ruffus.task.pipeline_run(target_tasks, forcedtorun_tasks=[], multiprocess=1, logger=stderr_logger, gnu_make_maximal_rebuild_mode=True)[source]

	Run pipelines.

	Parameters

	
	target_tasks – targets task functions which will be run if they are
out-of-date

	forcedtorun_tasks – task functions which will be run whether or not
they are out-of-date

	multiprocess – The number of concurrent jobs running on different
processes.

	multithread – The number of concurrent jobs running as different
threads. If > 1, ruffus will use multithreading
instead of multiprocessing (and ignore the
multiprocess parameter). Using multi threading
is particularly useful to manage high performance
clusters which otherwise are prone to
“processor storms” when large number of cores finish
jobs at the same time.

	logger (logging [http://docs.python.org/library/logging.html]
objects) – Where progress will be logged. Defaults to stderr output.

	verbose –
	level 0 : nothing

	level 1 : All Task names

	level 2 : All Tasks names any task function docstrings

	level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

	level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

	level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date
tasks)

	level 6 : All jobs in All Tasks whether out of date or not

	level 7 : Show file modification times for All jobs in All Tasks

	level 10: logs messages useful only for debugging ruffus pipeline code

	touch_files_only – Create or update input/output files only to
simulate running the pipeline. Do not run jobs.
If set to CHECKSUM_REGENERATE, will regenerate
the checksum history file to reflect the existing
i/o files on disk.

	exceptions_terminate_immediately – Exceptions cause immediate
termination rather than waiting
for N jobs to finish where
N = multiprocess

	log_exceptions – Print exceptions to logger as soon as they occur.

	checksum_level – Several options for checking up-to-dateness are
available: Default is level 1.

	level 0 : Use only file timestamps

	level 1 : above, plus timestamp of successful job completion

	level 2 : above, plus a checksum of the pipeline function body

	level 3 : above, plus a checksum of the pipeline
function default arguments and the
additional arguments passed in by task
decorators

	one_second_per_job – To work around poor file timepstamp resolution
for some file systems. Defaults to True if
checksum_level is 0 forcing Tasks to take a
minimum of 1 second to complete.

	runtime_data – Experimental feature: pass data to tasks at run time

	gnu_make_maximal_rebuild_mode – Defaults to re-running all
out-of-date tasks. Runs minimal
set to build targets if set to
True. Use with caution.

	history_file – Database file storing checksums and file timestamps
for input/output files.

	verbose_abbreviated_path – whether input and output paths are abbreviated.

	level 0: The full (expanded, abspath) input or output path

	level > 1: The number of subdirectories to include.
Abbreviated paths are prefixed with [,,,]/

	level < 0: Input / Output parameters are truncated
to MMM letters where verbose_abbreviated_path
==-MMM. Subdirectories are first removed to see
if this allows the paths to fit in the specified
limit. Otherwise abbreviated paths are prefixed by
<???>

pipeline_printout

	
ruffus.task.pipeline_printout(output_stream=None, target_tasks=[], forcedtorun_tasks=[], verbose=None, indent=4, gnu_make_maximal_rebuild_mode=True, wrap_width=100, runtime_data=None, checksum_level=None, history_file=None, verbose_abbreviated_path=None, pipeline=None)[source]

	Printouts the parts of the pipeline which will be run

Because the parameters of some jobs depend on the results of previous
tasks, this function produces only the current snap-shot of task jobs.
In particular, tasks which generate variable number of inputs into
following tasks will not produce the full range of jobs.

	::

	verbose = 0 : Nothing
verbose = 1 : All Tasks names
verbose = 2 : All Tasks (including any task function docstrings)
verbose = 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
verbose = 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
verbose = 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)
verbose = 6 : All jobs in All Tasks whether out of date or not

	Parameters

	
	output_stream (file-like object with write() function) – where to print to

	target_tasks – targets task functions which will be run if they are
out-of-date

	forcedtorun_tasks – task functions which will be run whether or not
they are out-of-date

	verbose – level 0 : nothing
level 1 : Out-of-date Task names
level 2 : All Tasks (including any task function docstrings)
level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)
level 6 : All jobs in All Tasks whether out of date or not
level 7 : Show file modification times for All jobs in All Tasks
level 10: logs messages useful only for debugging ruffus pipeline code

	indent – How much indentation for pretty format.

	gnu_make_maximal_rebuild_mode – Defaults to re-running all
out-of-date tasks. Runs minimal
set to build targets if set to
True. Use with caution.

	wrap_width – The maximum length of each line

	runtime_data – Experimental feature: pass data to tasks at run time

	checksum_level – Several options for checking up-to-dateness are
available: Default is level 1.
level 0 : Use only file timestamps
level 1 : above, plus timestamp of successful job completion
level 2 : above, plus a checksum of the pipeline function body
level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

	history_file – Database file storing checksums and file timestamps for input/output files.

	verbose_abbreviated_path – whether input and output paths are abbreviated.
level 0: The full (expanded, abspath) input or output path
level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with [,,,]/
level < 0: Input / Output parameters are truncated to MMM letters where verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by <???>

pipeline_printout_graph

	
ruffus.task.pipeline_printout_graph(stream, output_format=None, target_tasks=[], forcedtorun_tasks=[], draw_vertically=True, ignore_upstream_of_target=False, skip_uptodate_tasks=False, gnu_make_maximal_rebuild_mode=True, test_all_task_for_update=True, no_key_legend=False, minimal_key_legend=True, user_colour_scheme=None, pipeline_name='Pipeline:', size=(11, 8), dpi=120, runtime_data=None, checksum_level=None, history_file=None, pipeline=None)[source]

	print out pipeline dependencies in various formats

	Parameters

	
	stream (file-like object with write() function) – where to print to

	output_format – [“dot”, “jpg”, “svg”, “ps”, “png”]. All but the
first depends on the
dot [http://www.graphviz.org] program.

	target_tasks – targets task functions which will be run if they are
out-of-date.

	forcedtorun_tasks – task functions which will be run whether or not
they are out-of-date.

	draw_vertically – Top to bottom instead of left to right.

	ignore_upstream_of_target – Don’t draw upstream tasks of targets.

	skip_uptodate_tasks – Don’t draw up-to-date tasks if possible.

	gnu_make_maximal_rebuild_mode – Defaults to re-running all
out-of-date tasks. Runs minimal
set to build targets if set to
True. Use with caution.

	test_all_task_for_update – Ask all task functions if they are
up-to-date.

	no_key_legend – Don’t draw key/legend for graph.

	minimal_key_legend – Only legend entries for used task types

	user_colour_scheme – Dictionary specifying flowchart colour scheme

	pipeline_name – Pipeline Title

	size – tuple of x and y dimensions

	dpi – print resolution

	runtime_data – Experimental feature: pass data to tasks at run time

	history_file – Database file storing checksums and file timestamps
for input/output files.

	checksum_level – Several options for checking up-to-dateness are
available: Default is level 1.
level 0 : Use only file timestamps
level 1 : above, plus timestamp of successful job completion
level 2 : above, plus a checksum of the pipeline function body
level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

Logging

	
class ruffus.task.t_black_hole_logger[source]

	Does nothing!

	
class ruffus.task.t_stderr_logger[source]

	Everything to stderr

Implementation:

Parameter factories:

	
ruffus.task.merge_param_factory(input_files_task_globs, output_param, *extra_params)[source]

	Factory for task_merge

	
ruffus.task.collate_param_factory(input_files_task_globs, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)[source]

	Factory for task_collate

Looks exactly like @transform except that all [input] which lead to the same [output / extra] are combined together

	
ruffus.task.transform_param_factory(input_files_task_globs, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)[source]

	Factory for task_transform

	
ruffus.task.files_param_factory(input_files_task_globs, do_not_expand_single_job_tasks, output_extras)[source]

	
	Factory for functions which

	yield tuples of inputs, outputs / extras

..Note:

1. Each job requires input/output file names
2. Input/output file names can be a string, an arbitrarily nested sequence
3. Non-string types are ignored
3. Either Input or output file name must contain at least one string

	
ruffus.task.args_param_factory(orig_args)[source]

	
	Factory for functions which

	yield tuples of inputs, outputs / extras

..Note:

1. Each job requires input/output file names
2. Input/output file names can be a string, an arbitrarily nested sequence
3. Non-string types are ignored
3. Either Input or output file name must contain at least one string

	
ruffus.task.split_param_factory(input_files_task_globs, output_files_task_globs, *extra_params)[source]

	Factory for task_split

Wrappers around jobs:

	
ruffus.task.job_wrapper_generic(params, user_defined_work_func, register_cleanup, touch_files_only)[source]

	run func

	
ruffus.task.job_wrapper_io_files(params, user_defined_work_func, register_cleanup, touch_files_only, output_files_only=False)[source]

	job wrapper for all that deal with i/o files
run func on any i/o if not up to date

	
ruffus.task.job_wrapper_mkdir(params, user_defined_work_func, register_cleanup, touch_files_only)[source]

	Make missing directories including any intermediate directories on the specified path(s)

Checking if job is update:

	
ruffus.task.needs_update_check_modify_time(*params, **kwargs)[source]

	Given input and output files, see if all exist and whether output files are later than input files
Each can be

	string: assumed to be a filename “file1”

	any other type

	arbitrary nested sequence of (1) and (2)

	
ruffus.task.needs_update_check_directory_missing(*params, **kwargs)[source]

	
	Called per directory:

	Does it exist?
Is it an ordinary file not a directory? (throw exception

Exceptions and Errors

ruffus.proxy_logger

Create proxy for logging for use with multiprocessing

These can be safely sent (marshalled) across process boundaries

Example 1

Set up logger from config file:

from proxy_logger import *
args={}
args["config_file"] = "/my/config/file"

(logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

Example 2

Log to file "/my/lg.log" in the specified format (Time / Log name / Event type / Message).

Delay file creation until first log.

Only log Debug messages

Other alternatives for the logging threshold (args["level"]) include

	logging.DEBUG

	logging.INFO

	logging.WARNING

	logging.ERROR

	logging.CRITICAL

from proxy_logger import *
args={}
args["file_name"] = "/my/lg.log"
args["formatter"] = "%(asctime)s - %(name)s - %(levelname)6s - %(message)s"
args["delay"] = True
args["level"] = logging.DEBUG

(logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

Example 3

Rotate log files every 20 Kb, with up to 10 backups.

from proxy_logger import *
args={}
args["file_name"] = "/my/lg.log"
args["rotating"] = True
args["maxBytes"]=20000
args["backupCount"]=10
(logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

To use:

(logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

with logging_mutex:
 my_log.debug('This is a debug message')
 my_log.info('This is an info message')
 my_log.warning('This is a warning message')
 my_log.error('This is an error message')
 my_log.critical('This is a critical error message')
 my_log.log(logging.DEBUG, 'This is a debug message')

Note that the logging function exception() is not included because python
stack trace information is not well-marshalled
(pickle [http://docs.python.org/library/pickle.html]d) across processes.

Proxies for a log:

	
ruffus.proxy_logger.make_shared_logger_and_proxy(logger_factory, logger_name, args)[source]

	Make a logging [http://docs.python.org/library/logging.html] object
called “logger_name” by calling logger_factory(args)

This function will return a proxy to the shared logger which can be copied to jobs
in other processes, as well as a mutex which can be used to prevent simultaneous logging
from happening.

	Parameters

	
	logger_factory – functions which creates and returns an object with the
logging [http://docs.python.org/library/logging.html] interface.
setup_std_shared_logger() is one example of a logger factory.

	logger_name – name of log

	args – parameters passed (as a single argument) to logger_factory

	Returns

	a proxy to the shared logger which can be copied to jobs in other processes

	Returns

	a mutex which can be used to prevent simultaneous logging from happening

Create a logging object

	
ruffus.proxy_logger.setup_std_shared_logger(logger_name, args)[source]

	This function is a simple around wrapper around the python
logging [http://docs.python.org/library/logging.html] module.

This logger_factory example creates logging objects which can
then be managed by proxy via ruffus.proxy_logger.make_shared_logger_and_proxy()

This can be:

	a disk log file [http://docs.python.org/library/logging.html#filehandler]

	a automatically backed-up (rotating) log [http://docs.python.org/library/logging.html#rotatingfilehandler].

	any log specified in a configuration file [http://docs.python.org/library/logging.html#configuration-file-format]

These are specified in the args dictionary forwarded by make_shared_logger_and_proxy()

	Parameters

	
	logger_name – name of log

	args – a dictionary of parameters forwarded from make_shared_logger_and_proxy()

Valid entries include:

	
"level"

	Sets the threshold [http://docs.python.org/library/logging.html#logging.Handler.setLevel] for the logger.

	
"config_file"

	The logging object is configured from this configuration file [http://docs.python.org/library/logging.html#configuration-file-format].

	
"file_name"

	Sets disk log file name.

	
"rotating"

	Chooses a (rotating) log [http://docs.python.org/library/logging.html#rotatingfilehandler].

	
"maxBytes"

	Allows the file to rollover at a predetermined size

	
"backupCount"

	If backupCount is non-zero, the system will save old log files by appending the extensions .1, .2, .3 etc., to the filename.

	
"delay"

	Defer file creation until the log is written to.

	
"formatter"

	Converts [http://docs.python.org/library/logging.html#formatter-objects] the message to a logged entry string.
For example,

"%(asctime)s - %(name)s - %(levelname)6s - %(message)s"

Contributing

Contributions are very much encouraged and we greatly appreciate the time and effort people make to help maintain and support out tools. Every contribution helps, please dont be shy, we dont bite.

You can contribute to the development of our software in a number of different ways:

Reporting bug fixes

Bugs are annoying and reporting them will help us to fix your issue.

Bugs can be reported using the issue section in github [https://github.com/cgat-developers/ruffus/issues]

When reporting issues, please include:

	Steps in your code/command that led to the bug so it can be reproduced.

	The error message from the log message.

	Any other helpful info, such as the system/cluster engine or version information.

Proposing a new feature/enhancement

If you wish to contribute a new feature to the CGAT-ruffus repository then the best way is to raise this as an issue and label it as an enhancement in github [https://github.com/cgat-developers/ruffus/issues]

If you propose a new feature then please:

	Explain how your enhancement will work

	Describe as best as you can how you plan to implement this.

	If you dont think you have the necessary skills to implement this on your own then please say and we will try our best to help (or implement this for you). However, please be aware that this is a community developed software and our volunteers have other jobs. Therefore, we may not be able to work as fast as you hoped.

Pull Request Guidelines

Why not contribute to our project, its a great way of making the project better, your help is always welcome. We follow the fork/pull request model [https://guides.github.com/activities/forking]. To update our documentation, fix bugs or add extra enhancements you will need to create a pull request through github.

To create a pull request perform these steps:

	Create a github account.

	Create a personal fork of the project on github.

	Clone the fork onto your local machine. Your remote repo on github is called origin.

	Add the orginal repository as a remote called upstream.

	If you made the fork a while ago then please make sure you git pull upstream to keep your repository up to date

	Create a new branch to work on! We usually name our branches with capital first and last followed by a dash and something unique. For example: git checkout -b AC-new_doc.

	Impliment your fix/enhancement and make sure your code is effectively documented.

	Our code has tests and these will be ran when a pull request is submitted, however you can run our tests before you make the pull request, we have a number written in the ruffus/test/ directory. To run all test run: cd ruffus/test && /bin/bash run_all_unit_tests.cmd.

	Add or change our documentation in the docs/ directory.

	Squash all of your commits into a single commit with git interactive rebase [https://help.github.com/articles/about-git-rebase/].

	Push your branch to your fork on github git push origin

	From your fork in github.com, open a pull request in the correct branch.

	… This is where someone will review your changes and modify them or approve them …

	Once the pull request is approved and merged you can pull the changes from the upstream to your local repo and delete your branch.

Note

Always write your commit messages in the present tense. Your commit messages should describe what the commit does to the code and not what you did to the code.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

Symbols

 	
 	
 @active_if

 	Syntax

 	Tutorial

 	
 @check_if_uptodate

 	Syntax

 	
 @collate

 	Syntax

 	Tutorial

 	
 @collate (Advanced Usage)

 	Syntax

 	
 @collate, add_inputs(...)

 	Syntax

 	
 @collate, inputs(...)

 	Syntax

 	
 @combinations

 	Syntax

 	
 @combinations_with_replacement

 	Syntax

 	
 @files

 	Manual

 	Syntax

 	Tutorial on-the-fly parameter generation

 	check if up to date

 	in parallel

 	
 @files (on-the-fly parameter generation)

 	Syntax

 	
 @files_re

 	Syntax

 	combine (Deprecated Syntax)

 	
 @follow

 	imposing order with

 	
 @follows

 	Syntax

 	mkdir (Manual)

 	mkdir (Syntax)

 	
 	
 @graphviz

 	Syntax

 	
 @jobs_limit

 	Syntax

 	Tutorial

 	
 @merge

 	Syntax

 	
 @mkdir

 	Syntax

 	
 @originate

 	Syntax

 	
 @parallel

 	Syntax

 	Tutorial

 	
 @permutations

 	Syntax

 	
 @posttask

 	Syntax

 	touch_file (Syntax)

 	touchfile (Manual)

 	
 @product

 	Syntax

 	
 @split

 	Syntax

 	
 @subdivide

 	Syntax

 	Tutorial

 	
 @transform

 	Syntax

 	multiple dependencies

 	
 @transform, add_inputs(...)

 	Syntax

 	
 @transform, inputs(...)

 	Syntax

A

 	
 	Acknowledgements

 	
 add_inputs

 	Indicator Object (Adding additional input parameters)

 	Tutorial

 	
 	args_param_factory() (in module ruffus.task)

B

 	
 	break

C

 	
 	
 check if up to date

 	@files

 	
 check_if_uptodate

 	Tutorial

 	
 Checking dependencies

 	Tutorial

 	collate_param_factory() (in module ruffus.task)

 	
 combinatorics

 	Tutorial

 	
 	
 combine

 	@follows (Deprecated Syntax)

 	Manual

 	
 command line

 	Tutorial

 	
 Comparison of Ruffus with alternatives

 	Design

D

 	
 	
 data sharing across processes

 	Tutorial

 	decorator

 	
 decorators_compendium

 	Tutorial

 	
 defining tasks out of order

 	output_from

 	
 deprecated @files

 	Tutorial

 	
 	
 deprecated @files_re

 	Tutorial

 	
 Design

 	Comparison of Ruffus with alternatives

 	Ruffus

 	
 drmaa

 	run_job

E

 	
 	errors

 	
 Etymology

 	Ruffus

 	
 Exception

 	Missing input files

 	
 	
 Exceptions

 	Tutorial

 	exceptions

 	Tutorial

F

 	
 	files_param_factory() (in module ruffus.task)

 	
 flag files

 	Manual

 	
 flowchart colours

 	Tutorial, [1]

 	
 	
 for rerunning jobs

 	rules

 	
 formatter

 	Indicator Object (Disambiguating parameters)

 	Tutorial

G

 	
 	generator

 	
 globs

 	inputs parameters

 	
 	
 globs in input parameters

 	Tutorial

I

 	
 	importing ruffus

 	
 imposing order with

 	@follow

 	
 in parallel

 	@files

 	
 Indicator Object (Adding additional input parameters)

 	add_inputs

 	Indicator Object (Disambiguating parameters)

 	combine

 	formatter

 	mkdir

 	output_from

 	regex

 	suffix

 	touch_file

 	
 	
 Indicator Object (Replacing input parameters)

 	inputs

 	
 input / output parameters

 	Tutorial

 	
 inputs

 	Indicator Object (Replacing input parameters)

 	Tutorial

 	
 inputs parameters

 	globs

 	
 Interrupted Pipeline

 	Tutorial

 	
 interrupting tasks

 	Tutorial

 	interrupts

J

 	
 	job

 	job_wrapper_generic() (in module ruffus.task)

 	
 	job_wrapper_io_files() (in module ruffus.task)

 	job_wrapper_mkdir() (in module ruffus.task)

L

 	
 	
 logging

 	Tutorial

 	
 logging customising

 	Tutorial

 	
 	
 logging with ruffus.cmdline

 	Tutorial

 	
 logging your own message

 	Tutorial

M

 	
 	make_shared_logger_and_proxy() (in module ruffus.proxy_logger)

 	
 Manual

 	@files

 	Timestamp resolution

 	combine

 	flag files

 	
 merge

 	Tutorial

 	merge_param_factory() (in module ruffus.task)

 	
 Missing input files

 	Exception

 	
 	
 Mixing tasks, globs and file names

 	Tutorial

 	
 mkdir

 	@follows (Manual)

 	@follows (Syntax)

 	Tutorial

 	
 multiple dependencies

 	@transform

 	multiple errors

 	
 multiprocessing

 	Tutorial

N

 	
 	
 Name origins

 	Ruffus

 	
 	needs_update_check_directory_missing() (in module ruffus.task)

 	needs_update_check_modify_time() (in module ruffus.task)

O

 	
 	
 on_the_fly

 	Tutorial

 	
 one to one @transform

 	Tutorial

 	
 originate

 	Tutorial

 	
 output file names

 	Tutorial

 	
 	
 output_from

 	Indicator Object (Disambiguating parameters)

 	defining tasks out of order

 	referring to functions before they are defined

 	
 overview

 	Tutorial

P

 	
 	
 pipeline functions

 	pipeline_get_task_names

 	pipeline_printout_graph

 	pipeline_run, [1]

 	
 pipeline_get_task_names

 	print list of task names without running the pipeline

 	
 pipeline_printout

 	Printout simulated run of the pipeline

 	Tutorial

 	pipeline_printout() (in module ruffus.task)

 	
 pipeline_printout_graph

 	Tutorial

 	print flowchart representation of pipeline functions

 	pipeline_printout_graph() (in module ruffus.task)

 	
 pipeline_run

 	Run pipeline

 	Tutorial

 	
 	
 pipeline_run touch mode

 	Tutorial

 	
 pipeline_run verbosity

 	Tutorial

 	pipeline_run() (in module ruffus.task)

 	
 pipeline_run(multiprocess)

 	Tutorial

 	
 posttask

 	Tutorial

 	
 print flowchart representation of pipeline functions

 	pipeline_printout_graph

 	
 print list of task names without running the pipeline

 	pipeline_get_task_names

 	
 Printout simulated run of the pipeline

 	pipeline_printout

R

 	
 	
 referring to functions before they are defined

 	output_from

 	
 Regenerating the checkpoint file

 	Tutorial

 	
 regex

 	Indicator Object (Disambiguating parameters)

 	Tutorial

 	
 Ruffus

 	Design

 	Etymology

 	Name origins

 	
 	
 Ruffus names list

 	Tutorial

 	ruffus.proxy_logger (module)

 	
 rules

 	for rerunning jobs

 	
 Run drmaa

 	run_job

 	
 Run pipeline

 	pipeline_run

 	
 run_job

 	Run drmaa

S

 	
 	setup_std_shared_logger() (in module ruffus.proxy_logger)

 	signalling

 	
 split

 	Tutorial

 	split_param_factory() (in module ruffus.task)

 	
 string substiution for inputs

 	Tutorial

 	
 suffix

 	Indicator Object (Disambiguating parameters)

 	Tutorial

 	
 Syntax

 	@active_if

 	@check_if_uptodate

 	@collate

 	@collate (Advanced Usage)

 	@collate, add_inputs(...)

 	@collate, inputs(...)

 	@combinations

 	@combinations_with_replacement

 	@files

 	@files (on-the-fly parameter generation)

 	@files_re

 	@follows

 	@graphviz

 	@jobs_limit

 	@merge

 	@mkdir

 	@originate

 	@parallel

 	@permutations

 	@posttask

 	@product

 	@split

 	@subdivide

 	@transform

 	@transform, add_inputs(...)

 	@transform, inputs(...)

T

 	
 	t_black_hole_logger (class in ruffus.task)

 	t_stderr_logger (class in ruffus.task)

 	task

 	
 Task completion

 	Tutorial

 	
 Timestamp resolution

 	Manual

 	
 touch mode pipeline_run

 	Tutorial

 	
 touch_file

 	@posttask (Syntax)

 	
 touchfile

 	@posttask (Manual)

 	
 transform

 	Tutorial

 	transform_param_factory() (in module ruffus.task)

 	
 transforming in parallel

 	Tutorial

 	
 Tutorial

 	@active_if

 	@collate

 	@jobs_limit

 	@parallel

 	@subdivide

 	Checking dependencies

 	Exceptions

 	Interrupted Pipeline

 	Mixing tasks, globs and file names

 	Regenerating the checkpoint file

 	Ruffus names list

 	Task completion

 	Up to date

 	add_inputs

 	check_if_uptodate

 	combinatorics

 	command line

 	data sharing across processes

 	decorators_compendium

 	deprecated @files

 	deprecated @files_re

 	exceptions

 	flowchart colours, [1]

 	formatter

 	globs in input parameters

 	input / output parameters

 	inputs

 	interrupting tasks

 	logging

 	logging customising

 	logging with ruffus.cmdline

 	logging your own message

 	merge

 	mkdir

 	multiprocessing

 	on_the_fly

 	one to one @transform

 	originate

 	output file names

 	overview

 	pipeline_printout

 	pipeline_printout_graph

 	pipeline_run

 	pipeline_run touch mode

 	pipeline_run verbosity

 	pipeline_run(multiprocess)

 	posttask

 	regex

 	split

 	string substiution for inputs

 	suffix

 	touch mode pipeline_run

 	transform

 	transforming in parallel

 	
 	
 Tutorial on-the-fly parameter generation

 	@files

U

 	
 	
 Up to date

 	Tutorial

 [image: logo]

 Planned improvements

Planned improvements

These are the future enhancements I would like to see in Ruffus:

	
	Simpler syntax

	
	Extremely pared down syntax where strings are interpreted as commands (like gmake)
but with full Ruffus support / string interpolation etc.

	More powerful non-decorator OOP syntax

	More customisation points for your own syntax / database use

	
	Better support for Computational clusters / larger scale pipelines

	
	Running jobs out of sequence

	Long running pipeline where input can be added later

	Restarting failed jobs robustly

	Finding out why jobs fail

	Does Ruffus scale to thousands of parallel jobs. What are the bottlenecks?

	
	Better displays of progress

	
	Query which tasks / jobs are being run

	GUI displays

	
	Dynamic control during pipeline progress

	
	Turn tasks on and off

	Pause pipelines

	Pause jobs

	Change priorities

	
	Better handling of data

	
	Can we read and write from databases instead of files?

	Can we cleanup files but preserve history?

In up coming release:

Todo: Mention python3.2 multiprocessing import and proxies bug in FAQ

Todo: Refactor Error Messages

When are messages indented?
When are messages wrapped / extended across new lines

Todo: More documentation for formatter()

Needs to discuss how to escape. Also in FAQ?

Todo: OOP syntax taking strings

Todo: Extra unit tests

	@product set_input should take (input, input2…)

	bioinformatics pipelines (complicated example)

	output_from and Pipeline names

Todo: document output_from()

Todo: document new syntax

Todo: Log the progress through the pipeline in a machine parsable format

Standard parsable format for reporting the state of the pipeline enhancement

	Timestamped text file

	Timestamped Database

Unit tests dependeing on topology output:

	Pipeline.clone()

	Whether setup occurs pipeline_run() where target_tasks and forcedtorun_tasks are in different linked or unlinked pipelines

	pipeline in separate module

	self dependency -> errors

Todo: Check non-reentrant / global variables

	update_checksum_level_on_tasks(checksum_level) is non reentrant

Todo: Pipeline runs should have tags / names

Todo: either_or: Prevent failed jobs from propagating further

Motivating example:

@transform(prevtask, suffix(".txt"), either_or(".failed", ".succeed"))
def task(input_file, output_files):
 succeed_file_name, failed_file_name = output_files
 if not run_operation(input_file, succeed_file_name):
 # touch failed file
 with open(failed_file_name, "w") as faile_file:
 pass

Todo: (bug fix) pipeline_printout_graph should print inactive tasks

Todo: Mark input strings as non-file names, and add support for dynamically returned parameters

	Use indicator object.

	What is a good name? "output_from()", "NOT_FILE_NAME" :-)

	They will still participate in suffix, formatter and regex replacement

Bernie Pope suggests that we should generalise this:

If any object in the input parameters is a (non-list/tuple) class instance, check (getattr) whether it has a ruffus_params() function.
If it does, call it to obtain a list which is substituted in place.
If there are string nested within, these will also take part in Ruffus string substitution.
Objects with ruffus_params() always “decay” to the results of the function call

output_from would be a simple wrapper which returns the internal string via ruffus_params()

class output_from (object):
 def __init__(self, str):
 self.str = str
 def ruffus_params(self):
 return [self.str]

Returning a list should be like wildcards and should not introduce an unnecessary level of indirection for output parameters, i.e. suffix(“.txt”) or formatter() / “{basename[0]}” should work.

Check!

Future Changes to Ruffus

I would appreciated feedback and help on all these issues and where next to take ruffus.

Future Changes are features where we more or less know where we are going and how to get there.

Planned Improvements describes features we would like in Ruffus but where the implementation
or syntax has not yet been (fully) worked out.

If you have suggestions or contributions, please either write to me (ruffus_lib at llew.org.uk) or
send a pull request via the git site [https://github.com/bunbun/ruffus].

Todo: Replacements for formatter(), suffix(), regex()

formatter etc. should be self contained objects derived from a single base class
with behaviour rather than empty tags used for dispatching to functions

The design is better fit by and should be switched over to an inheritance scheme

Todo: Allow “extra” parameters to be used in output substitution

Formatter substitution can refer to the original elements in the input and extra parameters (without converting them to strings either). This refers to the original (nested) data structure.

This will allow normal python datatypes to be handed down and slipstreamed into a pipeline more easily.

The syntax would use Ruffus (> version 2.4) formatter:

@transform(..., formatter(), [
 "{EXTRAS[0][1][3]}", # EXTRAS
 "[INPUTS[1][2]]"],...) # INPUTS
def taskfunc():
 pass

EXTRA and INPUTS indicate that we are referring to the input and extra parameters.

These are the full (nested) parameters in all their original form. In the case of the input parameters, this obvious depends on the decorator, so

@transform(["a.text", [1, "b.text"]], formatter(), "{INPUTS[0][0]}")
def taskfunc():
 pass

would give

job #1
 input == "a.text"
 output == "a"

job #2
 input == [1, "b.text"]
 output == 1

The entire string must consist of INPUTS or EXTRAS followed by optionally N levels of square brackets. i.e. They must match "(INPUTS|EXTRAS)(\[\d+\])+"

No string conversion takes place.

For INPUTS or EXTRAS which have objects with a ruffus_params() function (see Todo item above),
the original object rather than the result of ruffus_params() is forwarded.

Todo: Extra signalling before and after each task and job

@prejob(custom_func)
@postjob(custom_func)
def task():
 pass

@prejob / @postjob would be run in the child processes.

Todo: @split / @subdivide returns the actual output created

	overrides (not replaces) wild cards.

	Returns a list, each with output and extra paramters.

	Won’t include extraneous files which were not created in the pipeline but which just happened to match the wild card

	We should have ruffus_output_params, ruffus_extra_params wrappers for clarity:

@split("a.file", "*.txt")
def split_into_txt_files(input_file, output_files):
 output_files = ["a.txt", "b.txt", "c.txt"]
 for output_file_name in output_files:
 with open(output_file_name, "w") as oo:
 pass
 return [
 ruffus_output("a.file"),
 [ruffus_output(["b.file", "c.file"]), ruffus_extras(13, 14)],
]

	Consider yielding?

Checkpointing

	If checkpoint file is used, the actual files are saved and checked the next time

	If no files are generated, no files are checked the next time…

	The output files do not have to match the wildcard though we can output a warning message if that happens…
This is obviously dangerous because the behavior will change if the pipeline is rerun without using the checkpoint file

	What happens if the task function changes?

Todo: New decorators

Todo: @originate

Each (serial) invocation returns lists of output parameters until returns
None. (Empty list = continue, None = break).

Todo: @recombine

Like @collate but automatically regroups jobs which were a result of a previous @subdivide / @split (even after intervening @transform)

This is the only way job trickling can work without stalling the pipeline: We would know
how many jobs were pending for each @recombine job and which jobs go together.

Todo: Bioinformatics example to end all examples

	Uses

	
	@product

	@subdivide

	@transform

	@collate

	@merge

Todo: Allow the next task to start before all jobs in the previous task have finished

Jake (Biesinger) calls this Job Trickling!

	A single long running job no longer will hold up the entire pipeline

	Calculates dependencies dynamically at the job level.

	Goal is to have a long running (months) pipeline to which we can keep adding input…

	We can choose between prioritising completion of the entire pipeline for some jobs
(depth first) or trying to complete as many tasks as possible (breadth first)

Converting to per-job rather than per task dependencies

Some decorators prevent per job (rather than per task) dependency calculations, and
will call a pipeline stall until the dependent tasks are completed (the current situation):

	
	Some types of jobs unavoidably depend on an entire previous task completing:

	
	add_inputs(), inputs()

	@merge

	@split (implicit @merge)

	
	@split, @originate produce variable amount of output at runtime and must be completed before the next task can be run.

	
	Should yield instead of return?

	
	@collate needs to pattern match all the inputs of a previous task

	
	Replace @collate with @recombine which “remembers” and reverses the results of a previous
@subdivide or @split

	Jobs need unique job_id tag

	Jobs are assigned (nested) grouping id which accompany them down the
pipeline after @subdivide / @split and are removed after @recombine

	Should have a count of jobs so we always know when an “input slot” is full

	Funny “single file” mode for @transform, @files needs to be
regularised so it is a syntactic (front end) convenience (oddity!)
and not plague the inards of ruffus

Breaking change: to force the entirety of the previous task to complete before the next one, use @follows

Implementation

	“Push” model. Completing jobs “check in” their outputs to “input slots” for all the sucessor jobs.

	When “input slots” are full for any job, it is put on the dispatch queue to be run.

	The priority (depth first or breadth first) can be set here.

	pipeline_run / Pipeline_printout create a task dependency tree structure (from decorator dependencies) (a runtime pipeline object)

	Each task in the pipeline object knows which other tasks wait on it.

	When output is created by a job, it sends messages to (i.e. function calls) all dependent tasks in the pipeline object with the new output

	Sets of output such as from @split and @subdivide and @originate have a
terminating condition and/or a associated count (# of output)

	Tasks in the pipeline object forward incoming inputs to task input slots (for slots common to all jobs in a
task: @inputs, @add_inputs) or to slots in new jobs in the pipeline object

	When all slots are full in each job, this triggers putting the job parameters onto the job submission queue

	The pipeline object should allow Ruffus to be reentrant?

Todo: Allow checkpoint files to be moved

Allow checkpoint files to be “rebased” so that moving the working directory of the pipeline does not
invalidate all the files.

We need some sort of path search and replace mechanism which handles conflicts, and probably versioning?

Todo: Remove intermediate files

Often large intermediate files are produced in the middle of a pipeline which could be
removed. However, their absence would cause the pipeline to appear out of date. What is
the best way to solve this?

In gmake, all intermediate files which are not marked .PRECIOUS are deleted.

We can similar mark out all tasks producing intermediate files so that all their output file can be deleted using an @intermediate/provisional/transient/temporary/interim/ephemeral decorator.

The tricky part of the design is how to delete files without disrupting our ability to build the original file dependency DAG, and hence
check which tasks have up-to-date output when the pipeline is run again.

	We can just work back from upstream/downstream files and ignore the intermediate files as gmake does. However,
the increased power of Ruffus makes this very fragile: In gmake, the DAG is entirely specified by the specified destination files.
In Ruffus, the number of task files is indeterminate, and can be changed at run time (see @split and @subdivide)

	We can save the filenames into the checksum file before deleting them

	We can leave the files in place files but zero out their contents. It is probably best
to write a small magic text value to the file, e.g. “RUFFUS_ZEROED_FILE”, so that we are
not confused by real files of zero size.

In practice (2) and (3) should be combined for safety.

	pipeline_cleaunup() will print out a list of files to be zeroed, or a list of commands to zero files or just do it for you

	When rerunning, we can force files to be recreated using pipeline_run(..., forcedtorun_tasks,...), and Ruffus will track back
through lists of dependencies and recreate all “zeroed” files.

Planned Improvements to Ruffus

	@split needs to be able to specify at run time the number of
resulting jobs without using wild cards

	legacy support for wild cards and file names.

Planned: Running python code (task functions) transparently on remote cluster nodes

Wait until next release.

Will bump Ruffus to v.3.0 if can run python jobs transparently on a cluster!

abstract out task.run_pooled_job_without_exceptions() as a function which can be supplied to pipeline_run

Common “job” interface:

	marshalled arguments

	marshalled function

	submission timestamp

	Returns

	
	completion timestamp

	returned values

	exception

	Full version use libpythongrid?
* http://zguide.zeromq.org/page:all
* Christian Widmer <ckwidmer@gmail.com>
* Cheng Soon Ong <chengsoon.ong@unimelb.edu.au>
* https://code.google.com/p/pythongrid/source/browse/#git%2Fpythongrid
* Probably not good to base Ruffus entirely on libpythongrid to minimise dependencies, the use of sophisticated configuration policies etc.

	Start with light-weight file-based protocol
* specify where the scripts should live
* use drmaa to start jobs
* have executable ruffus module which knows how to load deserialise (unmarshall) function / parameters from disk. This would be what drmaa starts up, given the marshalled data as an argument
* time stamp
* “heart beat” to check that the job is still running

	Next step: socket-based protocol
* use specified master port in ruffus script
* start remote processes using drmaa
* child receives marshalled data and the address::port in the ruffus script (head node) to initiate hand shake or die
* process recycling: run successive jobs on the same remote process for reduced overhead, until exceeds max number of jobs on the same process, min/max time on the same process
* resubmit if die (Don’t do sophisticated stuff like libpythongrid).

Planned: Custom parameter generator

Request on mailing list

I’ve often wished that I could use an arbitrary function to process the input filepath instead of just a regex.

def f(inputs, outputs, extra_param1, extra_param2):
 # do something to generate parameters
 return new_output_param, new_extra_param1, new_extra_param2

now f() can be used inside a Ruffus decorator to generate the outputs from inputs, instead of being forced to use a regex for the job.

Cheers,
Bernie.

Leverages built-in Ruffus functionality.
Don’t have to write entire parameter generation from scratch.

	Gets passed an iterator where you can do a for loop to get input parameters / a flattened list of files

	Other parameters are forwarded as is

	The duty of the function is to yield input, output, extra parameters

Simple to do but how do we prevent this from being a job-trickling barrier?

Postpone until we have an initial design for job-trickling: Ruffus v.4 ;-(

Planned: Ruffus GUI interface.

Desktop (PyQT or web-based solution?) I’d love to see an svg pipeline picture that I could actually interact with

Planned: @retry_on_error(NUM_OF_RETRIES)

Planned: Clean up

The plan is to store the files and directories created via
a standard interface.

The placeholders for this are a function call register_cleanup.

Jobs can specify the files they created and which need to be
deleted by returning a list of file names from the job function.

So:

raise Exception = Error

return False = halt pipeline now

return string / list of strings = cleanup files/directories later

return anything else = ignored

The cleanup file/directory store interface can be connected to
a text file or a database.

The cleanup function would look like this:

pipeline_cleanup(cleanup_log("../cleanup.log"), [instance ="october19th"])
pipeline_cleanup(cleanup_msql_db("user", "password", "hash_record_table"))

The parameters for where and how to store the list of created files could be
similarly passed to pipeline_run as an extra parameter:

pipeline_run(cleanup_log("../cleanup.log"), [instance ="october19th"])
pipeline_run(cleanup_msql_db("user", "password", "hash_record_table"))

where cleanup_log and cleanup_msql_db are classes which have functions for

	storing file

	retrieving file

	clearing entries

	Files would be deleted in reverse order, and directories after files.

	By default, only empty directories would be removed.

But this could be changed with a --forced_remove_dir option

	An --remove_empty_parent_directories option would be
supported by os.removedirs(path) [http://docs.python.org/library/os.html#os.removedirs].

 Overview: module code

 All modules for which code is available

	ruffus.file_name_parameters

	ruffus.proxy_logger

	ruffus.task

 ruffus.file_name_parameters

 Source code for ruffus.file_name_parameters

from __future__ import print_function
import re
from . import dbdict
from .ruffus_utility import *
from .ruffus_utility import shorten_filenames_encoder, FILE_CHECK_RETRY, FILE_CHECK_SLEEP
from .ruffus_exceptions import *

##
#
file_name_parameters
#
#
Copyright (c) 10/9/2009 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###

"""

**
:mod:`file_name_parameters` -- Overview
**

.. moduleauthor:: Leo Goodstadt <ruffus@llew.org.uk>

 Handles file names for ruffus

"""

888

imports

888
import os
import sys
import time
import glob
from itertools import groupby
import itertools
from collections import defaultdict
from time import strftime, gmtime

if sys.hexversion >= 0x03000000:
 # everything is unicode in python3
 path_str_type = str
else:
 path_str_type = basestring

class t_combinatorics_type:
 (COMBINATORICS_PRODUCT, COMBINATORICS_PERMUTATIONS,
 COMBINATORICS_COMBINATIONS, COMBINATORICS_COMBINATIONS_WITH_REPLACEMENT) = list(range(4))

def get_readable_path_str(original_path, max_len):
 """
 Truncates path to max_len characters if necessary
 If the result is a path within nested directory, will remove partially
 truncated directories names
 """
 if len(original_path) < max_len:
 return original_path
 truncated_name = original_path[-(max_len - 5):]
 if "/" not in truncated_name:
 return "[...]" + truncated_name
 return "[...]" + re.sub("^[^/]+", "", truncated_name)

def epoch_seconds_to_str(epoch_seconds):
 """
 Converts seconds since epoch into nice string with date and time to 2 significant
 digits for seconds
 """
 # returns 24 char long 25 May 2011 23:37:40.12
 time_str = strftime("%d %b %Y %H:%M:%S", gmtime(epoch_seconds))
 #
 fraction_of_second_as_str = (
 "%.2f" % (epoch_seconds - int(epoch_seconds)))[1:]
 # or fraction = ("%.2f" % (divmod(epoch_seconds, 1)[1]))[1:]
 return (time_str + fraction_of_second_as_str)

err_msg_no_regex_match = ("No jobs were run because no file names matched.\n"
 "Please make sure that the regular expression is correctly specified.")
err_msg_empty_files_parameter = ("@files() was empty, i.e. no files were specified.\n"
 "Please make sure this is by design.")

class t_file_names_transform(object):
 """
 Does the work for generating output / "extra input" / "extra" filenames
 input
 - a set of file names (derived from tasks, globs, hard coded file names)
 - a specification (e.g. a new suffix, a regular expression substitution pattern)
 output
 - a new file name

 N.B. Is this level of abstraction adequate?
 1) On one hand, this is a simple extension of the current working design
 2) On the other, we throw away the nested structure of tasks / globs on one hand
 and the nested structure of the outputs on the other hand.
 """

 def substitute(self, starting_file_names, pattern):
 pass

 # overriden only in t_suffix_file_names_transform
 # only suffix() behaves differently for output and extra files...
 def substitute_output_files(self, starting_file_names, pattern):
 return self.substitute(starting_file_names, pattern)

class t_suffix_file_names_transform(t_file_names_transform):
 """
 Does the work for generating output / "extra input" / "extra" filenames
 replacing a specified suffix
 """

 def __init__(self, enclosing_task, suffix_object, error_type, descriptor_string, output_dir):
 self.matching_regex = compile_suffix(
 enclosing_task, suffix_object, error_type, descriptor_string)
 self.matching_regex_str = suffix_object.args[0]
 self.output_dir = output_dir

 def substitute(self, starting_file_names, pattern):
 if self.output_dir == []:
 return regex_replace(starting_file_names[0], self.matching_regex_str, self.matching_regex, pattern)
 else:
 # change directory of starting file and return substitution
 starting_file_name = os.path.join(
 self.output_dir, os.path.split(starting_file_names[0])[1])
 return regex_replace(starting_file_name, self.matching_regex_str, self.matching_regex, pattern)
 return

 def substitute_output_files(self, starting_file_names, pattern):
 if self.output_dir == []:
 return regex_replace(starting_file_names[0], self.matching_regex_str, self.matching_regex, pattern, SUFFIX_SUBSTITUTE)
 else:
 # change directory of starting file and return substitution
 starting_file_name = os.path.join(
 self.output_dir, os.path.split(starting_file_names[0])[1])
 return regex_replace(starting_file_name, self.matching_regex_str, self.matching_regex, pattern, SUFFIX_SUBSTITUTE)

class t_regex_file_names_transform(t_file_names_transform):
 """
 Does the work for generating output / "extra input" / "extra" filenames
 replacing a specified regular expression
 """

 def __init__(self, enclosing_task, regex_object, error_type, descriptor_string):
 self.matching_regex = compile_regex(
 enclosing_task, regex_object, error_type, descriptor_string)
 self.matching_regex_str = regex_object.args[0]

 def substitute(self, starting_file_names, pattern):
 return regex_replace(starting_file_names[0], self.matching_regex_str, self.matching_regex, pattern)

class t_formatter_file_names_transform(t_file_names_transform):
 """
 Does the work for generating output / "extra input" / "extra" filenames
 replacing a specified regular expression
 """

 def __init__(self, enclosing_task, format_object, error_type, descriptor_string):
 self.matching_regexes = []
 self.matching_regex_strs = []
 if len(format_object.args):
 self.matching_regexes = compile_formatter(
 enclosing_task, format_object, error_type, descriptor_string)
 self.matching_regex_strs = list(format_object.args)

 def substitute(self, starting_file_names, pattern):
 # note: uses all file names
 return formatter_replace(starting_file_names, self.matching_regex_strs, self.matching_regexes, pattern)

class t_nested_formatter_file_names_transform(t_file_names_transform):
 """
 Does the work for generating output / "extra input" / "extra" filenames
 apply a whole series of regular expresions to a whole series of input
 """

 def __init__(self, enclosing_task, format_objects, error_type, descriptor_string):
 self.list_matching_regex = []
 self.list_matching_regex_str = []

 for format_object in format_objects:
 if len(format_object.args):
 self.list_matching_regex.append(compile_formatter(
 enclosing_task, format_object, error_type, descriptor_string))
 self.list_matching_regex_str.append(list(format_object.args))
 else:
 self.list_matching_regex.append([])
 self.list_matching_regex_str.append([])

 def substitute(self, starting_file_names, pattern):
 # note: uses all file names
 return nested_formatter_replace(starting_file_names, self.list_matching_regex_str, self.list_matching_regex, pattern)

t_params_tasks_globs_run_time_data

class t_params_tasks_globs_run_time_data(object):
 """
 After parameters are parsed into tasks, globs, runtime data
 """

 def __init__(self, params, tasks, globs, runtime_data_names):
 self.params = params
 self.tasks = tasks
 self.globs = globs
 self.runtime_data_names = runtime_data_names

 def __str__(self):
 return str(self.params)

 def param_iter(self):
 for p in self.params:
 yield t_params_tasks_globs_run_time_data(p, self.tasks, self.globs,
 self.runtime_data_names)

 def unexpanded_globs(self):
 """
 do not expand globs
 """
 return t_params_tasks_globs_run_time_data(self.params, self.tasks, [],
 self.runtime_data_names)

 def single_file_to_list(self):
 """
 if parameter is a simple string, wrap that in a list unless it is glob
 Useful for simple @transform cases
 """
 if isinstance(self.params, path_str_type) and not is_glob(self.params):
 self.params = [self.params]
 return True
 return False

 def file_names_transformed(self, filenames, file_names_transform):
 """
 return clone with the filenames / globs transformed by the supplied transform object
 """
 output_glob = file_names_transform.substitute(filenames, self.globs)
 output_param = file_names_transform.substitute(filenames, self.params)
 return t_params_tasks_globs_run_time_data(output_param, self.tasks, output_glob,
 self.runtime_data_names)

 def output_file_names_transformed(self, filenames, file_names_transform):
 """
 return clone with the filenames / globs transformed by the supplied transform object
 """
 output_glob = file_names_transform.substitute_output_files(
 filenames, self.globs)
 output_param = file_names_transform.substitute_output_files(
 filenames, self.params)
 return t_params_tasks_globs_run_time_data(output_param, self.tasks, output_glob,
 self.runtime_data_names)
 #
 # deprecated
 #

 def regex_replaced(self, filename, regex, regex_or_suffix=REGEX_SUBSTITUTE):
 output_glob = regex_replace(
 filename, regex, self.globs, regex_or_suffix)
 output_param = regex_replace(
 filename, regex, self.params, regex_or_suffix)
 return t_params_tasks_globs_run_time_data(output_param, self.tasks, output_glob,
 self.runtime_data_names)

888

needs_update_func

functions which are called to see if a job needs to be updated
#
Each task is a series of parallel jobs
each of which has the following pseudo-code
#
for param in param_generator_func():
if needs_update_func(*param):
job_wrapper(*param)
#
N.B. param_generator_func yields iterators of *sequences*
if you are generating single parameters, turn them into lists:
#
for a in alist:
yield (a,)
#
888

needs_update_check_directory_missing

N.B. throws exception if this is an ordinary file, not a directory

[docs]def needs_update_check_directory_missing(*params, **kwargs):
 """
 Called per directory:
 Does it exist?
 Is it an ordinary file not a directory? (throw exception
 """
 if len(params) == 1:
 dirs = params[0]
 elif len(params) == 2:
 dirs = params[1]
 else:
 raise Exception(
 "Wrong number of arguments in mkdir check %s" % (params,))

 missing_directories = []
 for d in get_strings_in_flattened_sequence(dirs):
 # print >>sys.stderr, "check directory missing %d " % os.path.exists(d) # DEBUG
 if not os.path.exists(d):
 missing_directories.append(d)
 continue
 # return True, "Directory [%s] is missing" % d
 if not os.path.isdir(d):
 raise error_not_a_directory(
 "%s already exists but as a file, not a directory" % d)

 if len(missing_directories):
 if len(missing_directories) > 1:
 return True, ": Directories %r are missing" % (", ".join(missing_directories))
 else:
 return True, ": Directories %r is missing" % (missing_directories[0])
 return False, "All directories exist"

def check_input_files_exist(*params):
 """If inputs are missing then there is no way a job can run
 successful. Must throw exception.

 This extra function is a hack to make sure input files exists
 right before job is called for better error messages, and to save
 things from blowing up inside the task function.

 In practice, we have observed a sporadic time-lag between a task
 completing on a remote node and an output file appearing in the
 expected location on the host running the ruffus pipeline. This
 causes a subsequent task to fail with missing input file even
 though the file will appear a few seconds later. It is not clear
 if this is an issue of a poorly configured storage, but a retry
 behaviour has been implemented to work around such issues.

 """
 if len(params):
 input_files = params[0]

 for f in get_strings_in_flattened_sequence(input_files):
 tries = FILE_CHECK_RETRY
 while tries > 0:
 if not os.path.exists(f):
 if os.path.lexists(f):
 raise MissingInputFileError("No way to run job: " +
 "Input file '%s' is a broken symbolic link." % f)
 tries -= 1
 time.sleep(FILE_CHECK_SLEEP)
 continue
 break
 if tries <= 0:
 raise MissingInputFileError("No way to run job: " +
 "Input file '%s' does not exist" % f)

def needs_update_check_exist(*params, **kwargs):
 """
 Given input and output files, see if all exist
 Each can be

 #. string: assumed to be a filename "file1"
 #. any other type
 #. arbitrary nested sequence of (1) and (2)

 """
 if "verbose_abbreviated_path" in kwargs:
 verbose_abbreviated_path = kwargs["verbose_abbreviated_path"]
 else:
 verbose_abbreviated_path = -55

 # missing output means build
 if len(params) < 2:
 return True, "i/o files not specified"

 i, o = params[0:2]
 i = get_strings_in_flattened_sequence(i)
 o = get_strings_in_flattened_sequence(o)

 #
 # build: missing output file
 #
 if len(o) == 0:
 return True, "Missing output file"

 # missing input / output file means always build
 missing_files = []
 for io in (i, o):
 for p in io:
 if not os.path.exists(p):
 missing_files.append(p)
 if len(missing_files):
 return True, "...\n Missing file%s %s" % ("s" if len(missing_files) > 1 else "",
 shorten_filenames_encoder(missing_files,
 verbose_abbreviated_path))

 #
 # missing input -> build only if output absent
 #
 if len(i) == 0:
 return False, "Missing input files"

 return False, "Up to date"

needs_update_check_modify_time

[docs]def needs_update_check_modify_time(*params, **kwargs):
 """
 Given input and output files, see if all exist and whether output files are later than input files
 Each can be

 #. string: assumed to be a filename "file1"
 #. any other type
 #. arbitrary nested sequence of (1) and (2)

 """
 # conditions for rerunning a job:
 # 1. forced to rerun entire taskset
 # 2. 1+ Output files don't exist
 # 3. 1+ of input files is newer than 1+ output files -- ruffus does this level right now...
 # 4. internal completion time for that file is out of date # incomplete runs will be rerun automatically
 # 5. checksum of code that ran the file is out of date # changes to function body result in rerun
 # 6. checksum of the args that ran the file are out of date # appropriate config file changes result in rerun
 try:
 task = kwargs['task']
 except KeyError:
 # allow the task not to be specified and fall back to classic
 # file timestamp behavior (either this or fix all the test cases,
 # which often don't have proper tasks)
 class Namespace:
 pass
 task = Namespace()
 task.checksum_level = CHECKSUM_FILE_TIMESTAMPS

 if "verbose_abbreviated_path" in kwargs:
 verbose_abbreviated_path = kwargs["verbose_abbreviated_path"]
 else:
 verbose_abbreviated_path = -55

 try:
 job_history = kwargs['job_history']
 except KeyError:
 # allow job_history not to be specified and reopen dbdict file redundantly...
 # Either this or fix all the test cases
 #job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)
 print("Oops: Should only appear in test code", file=sys.stderr)
 job_history = open_job_history(None)

 # missing output means build
 if len(params) < 2:
 return True, ""

 i, o = params[0:2]
 i = get_strings_in_flattened_sequence(i)
 o = get_strings_in_flattened_sequence(o)

 #
 # build: missing output file
 #
 if len(o) == 0:
 return True, "Missing output file"

 # missing input / output file means always build
 missing_files = []
 for io in (i, o):
 for p in io:
 if not os.path.exists(p):
 missing_files.append(p)
 if len(missing_files):
 return True, "...\n Missing file%s %s" % ("s" if len(missing_files) > 1 else "",
 shorten_filenames_encoder(missing_files,
 verbose_abbreviated_path))
 #
 # N.B. Checkpointing uses relative paths
 #

 # existing files, but from previous interrupted runs
 if task.checksum_level >= CHECKSUM_HISTORY_TIMESTAMPS:
 incomplete_files = []
 set_incomplete_files = set()
 func_changed_files = []
 set_func_changed_files = set()
 param_changed_files = []
 set_param_changed_files = set()
 # for io in (i, o):
 # for p in io:
 # if p not in job_history:
 # incomplete_files.append(p)
 for p in o:
 if os.path.relpath(p) not in job_history and p not in set_incomplete_files:
 incomplete_files.append(p)
 set_incomplete_files.add(p)
 if len(incomplete_files):
 return True, "Uncheckpointed file%s (left over from a failed run?):\n %s" % ("s" if len(incomplete_files) > 1 else "",
 shorten_filenames_encoder(incomplete_files,
 verbose_abbreviated_path))
 # check if function that generated our output file has changed
 for o_f_n in o:
 rel_o_f_n = os.path.relpath(o_f_n)
 old_chksum = job_history[rel_o_f_n]
 new_chksum = JobHistoryChecksum(rel_o_f_n, None, params[2:], task)
 if task.checksum_level >= CHECKSUM_FUNCTIONS_AND_PARAMS and \
 new_chksum.chksum_params != old_chksum.chksum_params and \
 o_f_n not in set_func_changed_files:
 param_changed_files.append(o_f_n)
 set_param_changed_files.add(o_f_n)
 elif task.checksum_level >= CHECKSUM_FUNCTIONS and \
 new_chksum.chksum_func != old_chksum.chksum_func and \
 o_f_n not in set_func_changed_files:
 func_changed_files.append(o_f_n)
 set_func_changed_files.add(o_f_n)

 if len(func_changed_files):
 return True, "Pipeline function has changed:\n %s" % (shorten_filenames_encoder(func_changed_files,
 verbose_abbreviated_path))
 if len(param_changed_files):
 return True, "Pipeline parameters have changed:\n %s" % (shorten_filenames_encoder(param_changed_files,
 verbose_abbreviated_path))

 #
 # missing input -> build only if output absent or function is out of date
 #
 if len(i) == 0:
 return False, "Missing input files"

 #
 # get sorted modified times for all input and output files
 #
 filename_to_times = [[], []]
 file_times = [[], []]

 # ___

 # pretty_io_with_date_times

 # ___

 def pretty_io_with_date_times(filename_to_times):

 # sort
 for io in range(2):
 filename_to_times[io].sort()

 #
 # add asterisk for all files which are causing this job to be out of date
 #
 file_name_to_asterisk = dict()
 oldest_output_mtime = filename_to_times[1][0][0]
 for mtime, file_name in filename_to_times[0]:
 file_name_to_asterisk[file_name] = "*" if mtime >= oldest_output_mtime else " "
 newest_output_mtime = filename_to_times[0][-1][0]
 for mtime, file_name in filename_to_times[1]:
 file_name_to_asterisk[file_name] = "*" if mtime <= newest_output_mtime else " "

 #
 # try to fit in 100 - 15 = 85 char lines
 # date time ~ 25 characters so limit file name to 55 characters
 #
 msg = "\n"
 category_names = "Input", "Output"
 for io in range(2):
 msg += " %s files:\n" % category_names[io]
 for mtime, file_name in filename_to_times[io]:
 file_datetime_str = epoch_seconds_to_str(mtime)
 msg += (" " + # indent
 # asterisked out of date files
 file_name_to_asterisk[file_name] + " " +
 file_datetime_str + ": " + # date time of file
 shorten_filenames_encoder(file_name,
 verbose_abbreviated_path) + "\n") # file name truncated to 55
 return msg

 #
 # Ignore output file if it is found in the list of input files
 # By definition they have the same timestamp,
 # and the job will otherwise appear to be out of date
 #
 # Symbolic links followed
 real_input_file_names = set()
 for input_file_name in i:
 rel_input_file_name = os.path.relpath(input_file_name)
 real_input_file_names.add(os.path.realpath(input_file_name))
 file_timestamp = os.path.getmtime(input_file_name)
 if task.checksum_level >= CHECKSUM_HISTORY_TIMESTAMPS and rel_input_file_name in job_history:
 old_chksum = job_history[rel_input_file_name]
 mtime = max(file_timestamp, old_chksum.mtime)
 else:
 mtime = file_timestamp
 filename_to_times[0].append((mtime, input_file_name))
 file_times[0].append(mtime)

 # for output files, we need to check modification time *in addition* to
 # function and argument checksums...
 for output_file_name in o:
 #
 # Ignore output files which are just symbolic links to input files or passed through
 # from input to output
 #
 real_file_name = os.path.realpath(output_file_name)
 if real_file_name in real_input_file_names:
 continue

 rel_output_file_name = os.path.relpath(output_file_name)
 file_timestamp = os.path.getmtime(output_file_name)
 if task.checksum_level >= CHECKSUM_HISTORY_TIMESTAMPS:
 old_chksum = job_history[rel_output_file_name]
 if old_chksum.mtime > file_timestamp and old_chksum.mtime - file_timestamp > 1.1:
 mtime = file_timestamp
 # use check sum time in preference if both are within one second
 # (suggesting higher resolution
 else:
 mtime = old_chksum.mtime
 else:
 mtime = file_timestamp
 file_times[1].append(mtime)
 filename_to_times[1].append((mtime, output_file_name))

 #
 # Debug: Force print modified file names and times
 #
 # if len(file_times[0]) and len (file_times[1]):
 # print >>sys.stderr, pretty_io_with_date_times(filename_to_times), file_times, (max(file_times[0]) >= min(file_times[1]))
 # else:
 # print >>sys.stderr, i, o

 #
 # update if any input file >= (more recent) output file
 #
 if len(file_times[0]) and len(file_times[1]) and max(file_times[0]) >= min(file_times[1]):
 return True, pretty_io_with_date_times(filename_to_times)

 if "return_file_dates_when_uptodate" in kwargs and kwargs["return_file_dates_when_uptodate"]:
 return False, "Up to date\n" + pretty_io_with_date_times(filename_to_times)

 return False, "Up to date"

#
is_file_re_combining
#

def is_file_re_combining(old_args):
 """
 Helper function for @files_re
 check if parameters wrapped in combine
 """
 combining_all_jobs = False
 orig_args = []
 for arg in old_args:
 if isinstance(arg, combine):
 combining_all_jobs = True
 if len(arg.args) == 1:
 orig_args.append(arg.args[0])
 else:
 orig_args.append(arg[0].args)
 else:
 orig_args.append(arg)
 return combining_all_jobs, orig_args

file_names_from_tasks_globs

def file_names_from_tasks_globs(files_task_globs,
 runtime_data, do_not_expand_single_job_tasks=False):
 """
 Replaces glob specifications and tasks with actual files / task output
 """

 # special handling for chaining tasks which conceptual have a single job
 # i.e. @merge and @files/@parallel with single job parameters
 if files_task_globs.params.__class__.__name__ == 'Task' and do_not_expand_single_job_tasks:
 return files_task_globs.params._get_output_files(True, runtime_data)

 task_or_glob_to_files = dict()

 # look up globs and tasks
 for g in files_task_globs.globs:
 # check whether still is glob pattern after transform
 # {} are particularly suspicious...
 if is_glob(g):
 task_or_glob_to_files[g] = sorted(glob.glob(g))
 for t in files_task_globs.tasks:
 of = t._get_output_files(False, runtime_data)
 task_or_glob_to_files[t] = of
 for n in files_task_globs.runtime_data_names:
 data_name = n.args[0]
 if data_name in runtime_data:
 task_or_glob_to_files[n] = runtime_data[data_name]
 else:
 raise error_missing_runtime_parameter("The inputs of this task depends on " +
 "the runtime parameter " +
 "'%s' which is missing " % data_name)

 return expand_nested_tasks_or_globs(files_task_globs.params, task_or_glob_to_files)

888

param_factories

makes python generators which yield parameters for
#
A) needs_update_func
B) job_wrapper

Each task is a series of parallel jobs
each of which has the following pseudo-code
#
for param in param_generator_func():
if needs_update_func(*param):
act_func(*param)
#
Test Usage:
#
#
param_func = xxx_factory(tasks, globs, orig_input_params, ...)
#
for params in param_func():
i, o = params[0:1]
print " input_params = " , i
print "output = " , o
#
#
#
#
#
888

touch_file_factory

def touch_file_factory(orig_args, register_cleanup):
 """
 Creates function, which when called, will touch files
 """
 file_names = orig_args
 # accepts unicode
 if isinstance(orig_args, path_str_type):
 file_names = [orig_args]
 else:
 # make copy so when original is modifies, we don't get confused!
 file_names = list(orig_args)

 def do_touch_file():
 for f in file_names:
 if not os.path.exists(f):
 with open(f, 'w') as ff:
 pass
 else:
 os.utime(f, None)
 register_cleanup(f, "touch")
 return do_touch_file

file_param_factory

orig_args = ["input", "output", 1, 2, ...]
orig_args = [
["input0", "output0", 1, 2, ...] # job 1
[["input1a", "input1b"], "output1", 1, 2, ...] # job 2
["input2", ["output2a", "output2b"], 1, 2, ...] # job 3
["input3", "output3", 1, 2, ...] # job 4
]
#

[docs]def args_param_factory(orig_args):
 """
 Factory for functions which
 yield tuples of inputs, outputs / extras

 ..Note::

 1. Each job requires input/output file names
 2. Input/output file names can be a string, an arbitrarily nested sequence
 3. Non-string types are ignored
 3. Either Input or output file name must contain at least one string

 """
 def iterator(runtime_data):
 for job_param in orig_args:
 yield job_param, job_param
 return iterator

file_param_factory

orig_args = ["input", "output", 1, 2, ...]
orig_args = [
["input0", "output0", 1, 2, ...] # job 1
[["input1a", "input1b"], "output1", 1, 2, ...] # job 2
["input2", ["output2a", "output2b"], 1, 2, ...] # job 3
["input3", "output3", 1, 2, ...] # job 4
]
#

[docs]def files_param_factory(input_files_task_globs,
 do_not_expand_single_job_tasks, output_extras):
 """
 Factory for functions which
 yield tuples of inputs, outputs / extras

 ..Note::

 1. Each job requires input/output file names
 2. Input/output file names can be a string, an arbitrarily nested sequence
 3. Non-string types are ignored
 3. Either Input or output file name must contain at least one string

 """
 def iterator(runtime_data):
 # substitute inputs
 # input_params = file_names_from_tasks_globs(input_files_task_globs, runtime_data, False)

 if input_files_task_globs.params == []:
 if "ruffus_WARNING" not in runtime_data:
 runtime_data["ruffus_WARNING"] = defaultdict(set)
 runtime_data["ruffus_WARNING"][iterator].add(
 err_msg_empty_files_parameter)
 return

 for input_spec, output_extra_param in zip(input_files_task_globs.param_iter(), output_extras):
 input_param = file_names_from_tasks_globs(
 input_spec, runtime_data, do_not_expand_single_job_tasks)
 yield_param = (input_param,) + output_extra_param
 yield yield_param, yield_param
 return iterator

def files_custom_generator_param_factory(generator):
 """
 Factory for @files taking custom generators
 wraps so that the generator swallows the extra runtime_data argument

 """
 def iterator(runtime_data):
 for params in generator():
 yield params, params
 return iterator

split_param_factory

[docs]def split_param_factory(input_files_task_globs, output_files_task_globs, *extra_params):
 """
 Factory for task_split
 """
 def iterator(runtime_data):
 # do_not_expand_single_job_tasks = True

 #
 # substitute tasks / globs at runtime. No glob subsitution for logging
 #
 input_param = file_names_from_tasks_globs(
 input_files_task_globs, runtime_data, True)
 output_param = file_names_from_tasks_globs(
 output_files_task_globs, runtime_data)
 output_param_logging = file_names_from_tasks_globs(
 output_files_task_globs.unexpanded_globs(), runtime_data)

 yield (input_param, output_param) + extra_params, (input_param, output_param_logging) + extra_params

 return iterator

merge_param_factory

[docs]def merge_param_factory(input_files_task_globs,
 output_param,
 *extra_params):
 """
 Factory for task_merge
 """
 #
 def iterator(runtime_data):
 # do_not_expand_single_job_tasks = True
 input_param = file_names_from_tasks_globs(
 input_files_task_globs, runtime_data, True)
 yield_param = (input_param, output_param) + extra_params
 yield yield_param, yield_param

 return iterator

originate_param_factory

def originate_param_factory(list_output_files_task_globs,
 *extra_params):
 """
 Factory for task_originate
 """
 #
 def iterator(runtime_data):
 for output_files_task_globs in list_output_files_task_globs:
 output_param = file_names_from_tasks_globs(
 output_files_task_globs, runtime_data)
 output_param_logging = file_names_from_tasks_globs(
 output_files_task_globs.unexpanded_globs(), runtime_data)
 yield (None, output_param) + tuple(extra_params), (None, output_param_logging) + tuple(extra_params)

 return iterator

888

param_factories

... which take inputs(), add_inputs(), suffix(), regex(), formatter()

888

input_param_to_file_name_list

def input_param_to_file_name_list(input_params):
 """
 Common function for
 collate_param_factory
 transform_param_factory
 subdivide_param_factory
 Creates adapter object
 Converts (on the fly) collection / iterator of input params
 ==> generator of flat list of strings (file_names)
 """
 for per_job_input_param in input_params:
 flattened_list_of_file_names = get_strings_in_flattened_sequence(
 per_job_input_param)
 yield per_job_input_param, flattened_list_of_file_names

input_param_to_file_name_list

def list_input_param_to_file_name_list(input_params):
 """
 Common function for
 product_param_factory
 Creates adapter object
 Converts (on the fly) collection / iterator of nested (input params)
 ==> generator of flat list of strings (file_names)
 """
 for per_job_input_param_list in input_params:
 list_of_flattened_list_of_file_names = [
 get_strings_in_flattened_sequence(ii) for ii in per_job_input_param_list]
 yield per_job_input_param_list, list_of_flattened_list_of_file_names

yield_io_params_per_job

def yield_io_params_per_job(input_params,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 extra_specs,
 runtime_data,
 iterator,
 expand_globs_in_output=False):
 """
 Helper function for
 transform_param_factory and
 collate_param_factory and
 subdivide_param_factory and
 combinatorics_param_factory and
 product_param_factory

 * *
 * Bad (non-orthogonal) design here. Needs refactoring *
 * *

 subdivide_param_factory requires globs patterns to be expanded

 yield (function call parameters, display parameters)

 all others

 yield function call parameters

 This means that

 all but @subdivide have

 for y in yield_io_params_per_job (...):
 yield y, y

 subdivide_param_factory has:

 return yield_io_params_per_job

 We would make everything more orthogonal but the current code makes collate easier to write...

 collate_param_factory

 for output_extra_params, grouped_params in groupby(sorted(io_params_iter, key = get_output_extras), key = get_output_extras):

 """
 #
 # Add extra warning if no regular expressions match:
 # This is a common class of frustrating errors
 #
 no_regular_expression_matches = True

 for orig_input_param, filenames in input_params:
 try:

 #
 # Should run job even if there are no file names, so long as there are input parameters...??
 #
 # if not orig_input_param:
 if not filenames:
 continue

 #
 # extra input has a mixture of input and output parameter behaviours:
 # 1) If it contains tasks, the files from these are passed through unchanged
 # 2) If it contains strings which look like strings,
 # these are transformed using regular expression, file component substitution etc.
 # just like output params
 #
 # So we do (2) first, ignoring tasks, then (1)
 if extra_input_files_task_globs:
 extra_inputs = extra_input_files_task_globs.file_names_transformed(
 filenames, file_names_transform)

 #
 # add or replace existing input parameters
 #
 if replace_inputs == t_extra_inputs.REPLACE_INPUTS:
 input_param = file_names_from_tasks_globs(
 extra_inputs, runtime_data)
 elif replace_inputs == t_extra_inputs.ADD_TO_INPUTS:
 input_param = (
 orig_input_param,) + file_names_from_tasks_globs(extra_inputs, runtime_data)
 else:
 input_param = orig_input_param
 else:
 input_param = orig_input_param

 # extras - this statement applies transformations on the
 # extra parameters. It traverses nested data
 # structures. The transformation forces a copy of each
 # parameter which causes memory duplication. The memory use
 # can be significant if extras is large.
 #
 # For example, if extras contains a list of 10000 files,
 # there will be one copy for each input parameter. If
 # there are 1000 input files, this means there will be
 # 1000 * 100000 filenames (instead of 1000 references to
 # the same list containing 10000 strings).
 extra_params = tuple(file_names_transform.substitute(
 filenames, p) for p in extra_specs)

 if expand_globs_in_output:
 #
 # do regex substitution to complete glob pattern
 # before glob matching
 #
 output_pattern_transformed = output_pattern.output_file_names_transformed(
 filenames, file_names_transform)
 output_param = file_names_from_tasks_globs(
 output_pattern_transformed, runtime_data)
 output_param_unglobbed = file_names_from_tasks_globs(
 output_pattern_transformed.unexpanded_globs(), runtime_data)
 yield ((input_param, output_param) + extra_params,
 (input_param, output_param_unglobbed) + extra_params)
 else:

 # output
 output_param = file_names_transform.substitute_output_files(
 filenames, output_pattern)
 yield (input_param, output_param) + extra_params

 no_regular_expression_matches = False

 # match failures are ignored
 except error_input_file_does_not_match:
 if runtime_data != None:
 if not "MATCH_FAILURE" in runtime_data:
 runtime_data["MATCH_FAILURE"] = defaultdict(set)
 runtime_data["MATCH_FAILURE"][iterator].add(
 str(sys.exc_info()[1]).strip())
 continue

 # all other exceptions including malformed regexes are raised
 except Exception:
 # print sys.exc_info()
 raise

 #
 # Add extra warning if no regular expressions match:
 # This is a common class of frustrating errors
 #
 if no_regular_expression_matches == True:
 if runtime_data != None:
 if "ruffus_WARNING" not in runtime_data:
 runtime_data["ruffus_WARNING"] = defaultdict(set)
 runtime_data["ruffus_WARNING"][iterator].add(
 err_msg_no_regex_match)

subdivide_param_factory

def subdivide_param_factory(input_files_task_globs,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_files_task_globs,
 *extra_specs):
 """
 Factory for task_split (advanced form)
 """
 def iterator(runtime_data):

 #
 # Convert input file names, globs, and tasks -> a list of (nested) file names
 # Each element of the list corresponds to the input parameters of a single job
 #
 input_params = file_names_from_tasks_globs(
 input_files_task_globs, runtime_data)

 if not len(input_params):
 return []

 return yield_io_params_per_job(input_param_to_file_name_list(sorted(input_params, key=lambda x: str(x))),
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_files_task_globs,
 extra_specs,
 runtime_data,
 iterator,
 True)

 return iterator

combinatorics_param_factory

def combinatorics_param_factory(input_files_task_globs,
 combinatorics_type,
 k_tuple,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 *extra_specs):
 """
 Factory for task_combinations_with_replacement, task_combinations, task_permutations
 """
 def iterator(runtime_data):

 #
 # Convert input file names, globs, and tasks -> a list of (nested) file names
 # Each element of the list corresponds to the input parameters of a single job
 #
 input_params = file_names_from_tasks_globs(
 input_files_task_globs, runtime_data)

 if not len(input_params):
 return

 if combinatorics_type == t_combinatorics_type.COMBINATORICS_PERMUTATIONS:
 combinatoric_iter = itertools.permutations(input_params, k_tuple)
 elif combinatorics_type == t_combinatorics_type.COMBINATORICS_COMBINATIONS:
 combinatoric_iter = itertools.combinations(input_params, k_tuple)
 elif combinatorics_type == t_combinatorics_type.COMBINATORICS_COMBINATIONS_WITH_REPLACEMENT:
 combinatoric_iter = itertools.combinations_with_replacement(
 input_params, k_tuple)
 else:
 raise Exception("Unknown combinatorics type %d" %
 combinatorics_type)

 for y in yield_io_params_per_job(list_input_param_to_file_name_list(combinatoric_iter),
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 extra_specs,
 runtime_data,
 iterator):
 yield y, y

 return iterator

product_param_factory

def product_param_factory(list_input_files_task_globs,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 *extra_specs):
 """
 Factory for task_product
 """
 def iterator(runtime_data):

 #
 # Convert input file names, globs, and tasks -> a list of (nested) file names
 # Each element of the list corresponds to the input parameters of a single job
 #
 input_params_list = [file_names_from_tasks_globs(
 ftg, runtime_data) for ftg in list_input_files_task_globs]

 #
 # ignore if empty list in any of all versus all
 #
 if not len(input_params_list):
 return

 for input_params in input_params_list:
 if not len(input_params):
 return

 for y in yield_io_params_per_job(list_input_param_to_file_name_list(itertools.product(*input_params_list)),
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 extra_specs,
 runtime_data,
 iterator):
 yield y, y

 return iterator

transform_param_factory

[docs]def transform_param_factory(input_files_task_globs,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 *extra_specs):
 """
 Factory for task_transform
 """
 def iterator(runtime_data):

 #
 # Convert input file names, globs, and tasks -> a list of (nested) file names
 # Each element of the list corresponds to the input parameters of a single job
 #
 input_params = file_names_from_tasks_globs(input_files_task_globs, runtime_data)

 if not len(input_params):
 return

 for y in yield_io_params_per_job(input_param_to_file_name_list(sorted(input_params, key=lambda x: str(x))),
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 extra_specs,
 runtime_data,
 iterator):
 yield y, y

 return iterator

collate_param_factory

[docs]def collate_param_factory(input_files_task_globs,
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 *extra_specs):
 """
 Factory for task_collate

 Looks exactly like @transform except that all [input] which lead to the same [output / extra] are combined together
 """
 #
 def iterator(runtime_data):

 #
 # Convert input file names, globs, and tasks -> a list of (nested) file names
 # Each element of the list corresponds to the input parameters of a single job
 #
 input_params = file_names_from_tasks_globs(
 input_files_task_globs, runtime_data)

 if not len(input_params):
 return

 io_params_iter = yield_io_params_per_job(input_param_to_file_name_list(sorted(input_params, key=lambda x: str(x))),
 file_names_transform,
 extra_input_files_task_globs,
 replace_inputs,
 output_pattern,
 extra_specs,
 runtime_data,
 iterator)

 #
 # group job params if their output/extra params are identical
 #
 # sort by first converted to string, and then grouped itself
 # identical things must be adjacent and sorting by strings guarantees that
 def get_output_extras(x): return x[1:]

 def get_output_extras_str(x): return str(x[1:])
 for output_extra_params, grouped_params in groupby(sorted(io_params_iter, key=get_output_extras_str), key=get_output_extras):
 #
 # yield the different input params grouped into a tuple, followed by all the common params
 # i.e. (input1, input2, input3), common_output, common_extra1, common_extra2...
 #

 # Use group by to avoid successive duplicate input_param (remember we have sorted)
 # This works even with unhashable items!

 params = (tuple(input_param for input_param, ignore in
 groupby(g[0] for g in grouped_params)),) + output_extra_params

 # the same params twice, once for use, once for display, identical in this case
 yield params, params

 return iterator

 ruffus.proxy_logger

 Source code for ruffus.proxy_logger

##
#
proxy_logger.py
#
#
Copyright (c) 10/9/2009 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###
"""
**
Create proxy for logging for use with multiprocessing
**

These can be safely sent (marshalled) across process boundaries

===========
Example 1
===========

 Set up logger from config file::

 from proxy_logger import *
 args={}
 args["config_file"] = "/my/config/file"

 (logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

===========
Example 2
===========

 Log to file ``"/my/lg.log"`` in the specified format (Time / Log name / Event type / Message).

 Delay file creation until first log.

 Only log ``Debug`` messages

 Other alternatives for the logging threshold (``args["level"]``) include

 * ``logging.DEBUG``
 * ``logging.INFO``
 * ``logging.WARNING``
 * ``logging.ERROR``
 * ``logging.CRITICAL``

 ::

 from proxy_logger import *
 args={}
 args["file_name"] = "/my/lg.log"
 args["formatter"] = "%(asctime)s - %(name)s - %(levelname)6s - %(message)s"
 args["delay"] = True
 args["level"] = logging.DEBUG

 (logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

===========
Example 3
===========

 Rotate log files every 20 Kb, with up to 10 backups.
 ::

 from proxy_logger import *
 args={}
 args["file_name"] = "/my/lg.log"
 args["rotating"] = True
 args["maxBytes"]=20000
 args["backupCount"]=10
 (logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

==============
To use:
==============

 ::

 (logger_proxy,
 logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,
 "my_logger", args)

 with logging_mutex:
 my_log.debug('This is a debug message')
 my_log.info('This is an info message')
 my_log.warning('This is a warning message')
 my_log.error('This is an error message')
 my_log.critical('This is a critical error message')
 my_log.log(logging.DEBUG, 'This is a debug message')

 Note that the logging function ``exception()`` is not included because python
 stack trace information is not well-marshalled
 (`pickle <http://docs.python.org/library/pickle.html>`_\ d) across processes.

"""

888

imports

888

import sys
import os

888

Shared logging

888

import multiprocessing
import multiprocessing.managers

import logging
import logging.handlers

#
setup_logger
#
[docs]def setup_std_shared_logger(logger_name, args):
 """
 This function is a simple around wrapper around the python
 `logging <http://docs.python.org/library/logging.html>`_ module.

 This *logger_factory* example creates logging objects which can
 then be managed by proxy via ``ruffus.proxy_logger.make_shared_logger_and_proxy()``

 This can be:

 * a `disk log file <http://docs.python.org/library/logging.html#filehandler>`_
 * a automatically backed-up `(rotating) log <http://docs.python.org/library/logging.html#rotatingfilehandler>`_.
 * any log specified in a `configuration file <http://docs.python.org/library/logging.html#configuration-file-format>`_

 These are specified in the ``args`` dictionary forwarded by ``make_shared_logger_and_proxy()``

 :param logger_name: name of log
 :param args: a dictionary of parameters forwarded from ``make_shared_logger_and_proxy()``

 Valid entries include:

 .. describe:: "level"

 Sets the `threshold <http://docs.python.org/library/logging.html#logging.Handler.setLevel>`_ for the logger.

 .. describe:: "config_file"

 The logging object is configured from this `configuration file <http://docs.python.org/library/logging.html#configuration-file-format>`_.

 .. describe:: "file_name"

 Sets disk log file name.

 .. describe:: "rotating"

 Chooses a `(rotating) log <http://docs.python.org/library/logging.html#rotatingfilehandler>`_.

 .. describe:: "maxBytes"

 Allows the file to rollover at a predetermined size

 .. describe:: "backupCount"

 If backupCount is non-zero, the system will save old log files by appending the extensions ``.1``, ``.2``, ``.3`` etc., to the filename.

 .. describe:: "delay"

 Defer file creation until the log is written to.

 .. describe:: "formatter"

 `Converts <http://docs.python.org/library/logging.html#formatter-objects>`_ the message to a logged entry string.
 For example,
 ::

 "%(asctime)s - %(name)s - %(levelname)6s - %(message)s"

 """

 #
 # Log file name with logger level
 #
 new_logger = logging.getLogger(logger_name)
 if "level" in args:
 new_logger.setLevel(args["level"])

 if "config_file" in args:
 logging.config.fileConfig(args["config_file"])

 else:
 if "file_name" not in args:
 raise Exception(
 "Missing file name for log. Remember to set 'file_name'")
 log_file_name = args["file_name"]

 if "rotating" in args:
 rotating_args = {}
 # override default
 rotating_args["maxBytes"] = args.get("maxBytes", 100000)
 rotating_args["backupCount"] = args.get("backupCount", 5)
 handler = logging.handlers.RotatingFileHandler(
 log_file_name, **rotating_args)
 else:
 defer_loggin = "delay" in args
 handler = logging.handlers.RotatingFileHandler(
 log_file_name, delay=defer_loggin)

 # %(name)s
 # %(levelno)s
 # %(levelname)s
 # %(pathname)s
 # %(filename)s
 # %(module)s
 # %(funcName)s
 # %(lineno)d
 # %(created)f
 # %(relativeCreated)d
 # %(asctime)s
 # %(msecs)d
 # %(thread)d
 # %(threadName)s
 # %(process)d
 # %(message)s
 #
 # E.g.: "%(asctime)s - %(name)s - %(levelname)6s - %(message)s"
 #
 if "formatter" in args:
 my_formatter = logging.Formatter(args["formatter"])
 handler.setFormatter(my_formatter)

 new_logger.addHandler(handler)

 #
 # This log object will be wrapped in proxy
 #
 return new_logger

#
Proxy object for logging
Logging messages will be marshalled (forwarded) to the process where the
shared log lives
#
class LoggerProxy(multiprocessing.managers.BaseProxy):
 def debug(self, *args, **kwargs):
 return self._callmethod('debug', args, kwargs)

 def log(self, *args, **kwargs):
 return self._callmethod('log', args, kwargs)

 def info(self, *args, **kwargs):
 return self._callmethod('info', args, kwargs)

 def warning(self, *args, **kwargs):
 return self._callmethod('warning', args, kwargs)

 def error(self, *args, **kwargs):
 return self._callmethod('error', args, kwargs)

 def critical(self, *args, **kwargs):
 return self._callmethod('critical', args, kwargs)

 def log(self, *args, **kwargs):
 return self._callmethod('log', args, kwargs)

 def __str__(self):
 return "<LoggingProxy>"

 def __repr__(self):
 return 'LoggerProxy()'

#
Register the setup_logger function as a proxy for setup_logger
#
We use SyncManager as a base class so we can get a lock proxy for synchronising
logging later on
#

class LoggingManager(multiprocessing.managers.SyncManager):
 """
 Logging manager sets up its own process and will create the real Log object there
 We refer to this (real) log via proxies
 """
 pass

[docs]def make_shared_logger_and_proxy(logger_factory, logger_name, args):
 """
 Make a `logging <http://docs.python.org/library/logging.html>`_ object
 called "\ ``logger_name``\ " by calling ``logger_factory``\ (``args``\)

 This function will return a proxy to the shared logger which can be copied to jobs
 in other processes, as well as a mutex which can be used to prevent simultaneous logging
 from happening.

 :param logger_factory: functions which creates and returns an object with the
 `logging <http://docs.python.org/library/logging.html>`_ interface.
 ``setup_std_shared_logger()`` is one example of a logger factory.
 :param logger_name: name of log
 :param args: parameters passed (as a single argument) to ``logger_factory``
 :returns: a proxy to the shared logger which can be copied to jobs in other processes
 :returns: a mutex which can be used to prevent simultaneous logging from happening

 """
 #
 # make shared log and proxy
 #
 manager = LoggingManager()
 manager.register('setup_logger',
 logger_factory,
 proxytype=LoggerProxy,
 exposed=('critical', 'log',
 'info', 'debug', 'warning', 'error'))
 manager.start()
 logger_proxy = manager.setup_logger(logger_name, args)

 #
 # make sure we are not logging at the same time in different processes
 #
 logging_mutex = manager.Lock()

 return logger_proxy, logging_mutex

 ruffus.task

 Source code for ruffus.task

#!/usr/bin/env python
from __future__ import print_function

from collections import defaultdict, deque
from collections import namedtuple
from contextlib import contextmanager
from multiprocessing import Pool as ProcessPool
from multiprocessing.pool import ThreadPool
import copy
import functools
import multiprocessing
import os
import glob
import re
import signal
import subprocess
import sys
import textwrap
import time
import traceback

from .file_name_parameters import \
 args_param_factory, \
 check_files_io_parameters, \
 check_input_files_exist, \
 check_parallel_parameters, \
 collate_param_factory, \
 combinatorics_param_factory, \
 files_custom_generator_param_factory, \
 files_param_factory, \
 get_nested_tasks_or_globs, \
 is_file_re_combining, \
 merge_param_factory, \
 needs_update_check_directory_missing, \
 needs_update_check_modify_time, \
 originate_param_factory, \
 product_param_factory, \
 regex, suffix, formatter, inputs, \
 split_param_factory, \
 subdivide_param_factory, \
 t_combinatorics_type, \
 t_extra_inputs, \
 t_formatter_file_names_transform, \
 t_nested_formatter_file_names_transform, \
 t_params_tasks_globs_run_time_data, \
 t_regex_file_names_transform, \
 t_suffix_file_names_transform, \
 transform_param_factory, \
 touch_file_factory
from .ruffus_utility import shorten_filenames_encoder, \
 ignore_unknown_encoder, \
 get_strings_in_flattened_sequence, \
 JobHistoryChecksum, \
 CHECKSUM_FILE_TIMESTAMPS, \
 parse_task_arguments, \
 replace_placeholders_with_tasks_in_input_params, \
 get_default_checksum_level, \
 open_job_history, \
 non_str_sequence
import ruffus.ruffus_exceptions as ruffus_exceptions
from .print_dependencies import attributes_to_str
from .graph import node, topologically_sorted_nodes, graph_printout

if sys.hexversion < 0x03000000:
 from future_builtins import zip, map

##
#
#
task.py
#
Copyright (c) 10/9/2009 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###
"""

**
:mod:`ruffus.task` -- Overview
**

.. moduleauthor:: Leo Goodstadt <ruffus@llew.org.uk>

Initial implementation of @active_if by Jacob Biesinger

============================
Decorator syntax:
============================

 Pipelined tasks are created by "decorating" a function with the following syntax::

 def func_a():
 pass

 @follows(func_a)
 def func_b ():
 pass

 Each task is a single function which is applied one or more times to a list of parameters
 (typically input files to produce a list of output files).

 Each of these is a separate, independent job (sharing the same code) which can be
 run in parallel.

============================
Running the pipeline
============================
 To run the pipeline::

 pipeline_run(target_tasks, forcedtorun_tasks = [], multiprocess = 1,
 logger = stderr_logger,
 gnu_make_maximal_rebuild_mode = True,
 cleanup_log = "../cleanup.log")

 pipeline_cleanup(cleanup_log = "../cleanup.log")

"""

try:
 from collections.abc import Callable
except ImportError:
 from collections import Callable

888

imports

888
if sys.hexversion >= 0x03000000:
 # everything is unicode in python3
 from functools import reduce

try:
 import cPickle as pickle
except:
 import pickle as pickle

if __name__ == '__main__':
 import sys
 sys.path.insert(0, ".")

if sys.hexversion >= 0x03000000:
 # everything is unicode in python3
 path_str_type = str
else:
 path_str_type = basestring

#
use simplejson in place of json for python < 2.6
#
try:
 import json
except ImportError:
 import simplejson
 json = simplejson
dumps = json.dumps

if sys.hexversion >= 0x03000000:
 import queue as queue
else:
 import Queue as queue

class Ruffus_Keyboard_Interrupt_Exception (Exception):
 pass

888

#
light weight logging objects
#
#
888

[docs]class t_black_hole_logger:

 """
 Does nothing!
 """

 def info(self, message, *args, **kwargs):
 pass

 def debug(self, message, *args, **kwargs):
 pass

 def warning(self, message, *args, **kwargs):
 pass

 def error(self, message, *args, **kwargs):
 pass

[docs]class t_stderr_logger:

 """
 Everything to stderr
 """

 def __init__(self):
 self.unique_prefix = ""

 def add_unique_prefix(self):
 import random
 random.seed()
 self.unique_prefix = str(random.randint(0, 1000)) + " "

 def info(self, message):
 sys.stderr.write(self.unique_prefix + message + "\n")

 def warning(self, message):
 sys.stderr.write("\n\n" + self.unique_prefix +
 "WARNING:\n " + message + "\n\n")

 def error(self, message):
 sys.stderr.write("\n\n" + self.unique_prefix +
 "ERROR:\n " + message + "\n\n")

 def debug(self, message):
 sys.stderr.write(self.unique_prefix + message + "\n")

class t_stream_logger:

 """
 Everything to stderr
 """

 def __init__(self, stream):
 self.stream = stream

 def info(self, message):
 self.stream.write(message + "\n")

 def warning(self, message):
 self.stream.write("\n\nWARNING:\n " + message + "\n\n")

 def error(self, message):
 self.stream.write("\n\nERROR:\n " + message + "\n\n")

 def debug(self, message):
 self.stream.write(message + "\n")

black_hole_logger = t_black_hole_logger()
stderr_logger = t_stderr_logger()

class t_verbose_logger:

 def __init__(self, verbose, verbose_abbreviated_path, logger, runtime_data):
 self.verbose = verbose
 self.logger = logger
 self.runtime_data = runtime_data
 self.verbose_abbreviated_path = verbose_abbreviated_path

def log_at_level(logger, message_level, verbose_level, msg):
 """
 writes to log if message_level > verbose level
 Returns anything written in case we might want to drop down and output at a
 lower log level
 """
 if message_level <= verbose_level:
 logger.info(msg)
 return True
 return False

queue management objects
inserted into queue like job parameters to control multi-processing queue
fake parameters to signal in queue
class all_tasks_complete:
 pass

class waiting_for_more_tasks_to_complete:
 pass

synchronisation data
#
SyncManager()
syncmanager.start()

@contextmanager
def do_nothing_semaphore():
 yield

option to turn on EXTRA pipeline_run DEBUGGING
EXTRA_PIPELINERUN_DEBUGGING = False

class task_decorator(object):

 """
 Forwards to functions within Task
 """

 def __init__(self, *decoratorArgs, **decoratorNamedArgs):
 """
 saves decorator arguments
 """
 self.args = decoratorArgs
 self.named_args = decoratorNamedArgs

 def __call__(self, task_func):
 """
 calls func in task with the same name as the class
 """
 # add task to main pipeline
 # check for duplicate tasks inside _create_task
 task = main_pipeline._create_task(task_func)

 # call the method called
 # task.decorator_xxxx
 # where xxxx = transform subdivide etc
 task_decorator_function = getattr(
 task, "_decorator_" + self.__class__.__name__)
 task.created_via_decorator = True
 # create empty placeholder with the args %s actually inside the task function
 task.description_with_args_placeholder = task._get_decorated_function(
).replace("...", "%s", 1)
 task_decorator_function(*self.args, **self.named_args)

 #
 # don't change the function so we can call it unaltered
 #
 return task_func

class follows(task_decorator):
 pass

class files(task_decorator):
 pass

class split(task_decorator):
 pass

class transform(task_decorator):
 pass

class subdivide(task_decorator):

 """
 Splits a each set of input files into multiple output file names,
 where the number of output files may not be known beforehand.
 """
 pass

class originate(task_decorator):
 pass

class merge(task_decorator):
 pass

class posttask(task_decorator):
 pass

class jobs_limit(task_decorator):
 pass

class collate(task_decorator):
 pass

class active_if(task_decorator):
 pass

class check_if_uptodate(task_decorator):
 pass

class parallel(task_decorator):
 pass

class graphviz(task_decorator):
 pass

class files_re(task_decorator):
 """obsolete"""
 pass

indicator objects
class mkdir(task_decorator):
 # def __init__ (self, *args):
 # self.args = args
 pass

touch_file
class touch_file(object):

 def __init__(self, *args):
 self.args = args

job descriptors
given parameters, returns strings describing job
First returned parameter is string in strong form
Second returned parameter is a list of strings for input,
output and extra parameters
intended to be reformatted with indentation
main use in error logging
def generic_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
 if unglobbed_params in ([], None):
 m = "Job"
 else:
 m = "Job = %s" % ignore_unknown_encoder(unglobbed_params)
 return m, [m]

def io_files_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
 extra_param = ", " + shorten_filenames_encoder(map(str, unglobbed_params[2:]),
 verbose_abbreviated_path)[1:-1] \
 if len(unglobbed_params) > 2 else ""
 out_param = shorten_filenames_encoder(unglobbed_params[1], verbose_abbreviated_path) \
 if len(unglobbed_params) > 1 else "??"
 in_param = shorten_filenames_encoder(unglobbed_params[0], verbose_abbreviated_path) \
 if len(unglobbed_params) > 0 else "??"

 return ("Job = [%s -> %s%s]" % (in_param, out_param, extra_param),
 ["Job = [%s" % in_param, "-> " + out_param + extra_param + "]"])

def io_files_one_to_many_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):

 extra_param = ", " + shorten_filenames_encoder(unglobbed_params[2:], verbose_abbreviated_path)[1:-1] \
 if len(unglobbed_params) > 2 else ""
 out_param = shorten_filenames_encoder(unglobbed_params[1], verbose_abbreviated_path) \
 if len(unglobbed_params) > 1 else "??"
 in_param = shorten_filenames_encoder(unglobbed_params[0], verbose_abbreviated_path) \
 if len(unglobbed_params) > 0 else "??"

 # start with input parameter
 ret_params = ["Job = [%s" % in_param]

 # add output parameter to list,
 # processing one by one if multiple output parameters
 if len(unglobbed_params) > 1:
 if isinstance(unglobbed_params[1], (list, tuple)):
 ret_params.extend(
 "-> " + shorten_filenames_encoder(p, verbose_abbreviated_path) for p in unglobbed_params[1])
 else:
 ret_params.append("-> " + out_param)

 # add extra
 if len(unglobbed_params) > 2:
 ret_params.append(
 " , " + shorten_filenames_encoder(unglobbed_params[2:], verbose_abbreviated_path)[1:-1])

 # add closing bracket
 ret_params[-1] += "]"

 return ("Job = [%s -> %s%s]" % (in_param, out_param, extra_param), ret_params)

def mkdir_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
 # input, output and parameters
 if len(unglobbed_params) == 1:
 m = "Make directories %s" % (shorten_filenames_encoder(
 unglobbed_params[0], verbose_abbreviated_path))
 elif len(unglobbed_params) == 2:
 m = "Make directories %s" % (shorten_filenames_encoder(
 unglobbed_params[1], verbose_abbreviated_path))
 else:
 return [], []
 return m, [m]

job wrappers
registers files/directories for cleanup
[docs]def job_wrapper_generic(params, user_defined_work_func, register_cleanup, touch_files_only):
 """
 run func
 """
 assert(user_defined_work_func)
 return user_defined_work_func(*params)

[docs]def job_wrapper_io_files(params, user_defined_work_func, register_cleanup, touch_files_only,
 output_files_only=False):
 """
 job wrapper for all that deal with i/o files
 run func on any i/o if not up to date
 """
 assert(user_defined_work_func)

 i, o = params[0:2]

 if touch_files_only == 0:
 # @originate only uses output files
 if output_files_only:
 # TODOOO extra and named extras
 ret_val = user_defined_work_func(*(params[1:]))
 # all other decorators
 else:
 try:
 # TODOOO extra and named extras
 ret_val = user_defined_work_func(*params)
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write(
 "w" * 36 + "[[task() done]]" + "w" * 27 + "\n")
 except KeyboardInterrupt as e:
 # Reraise KeyboardInterrupt as a normal Exception
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write("E" * 36 + "[[KeyboardInterrupt from task()]]" +
 "E" * 9 + "\n")
 raise Ruffus_Keyboard_Interrupt_Exception("KeyboardInterrupt")
 except:
 # sys.stderr.write("?? %s ??" % (tuple(params),))
 raise
 elif touch_files_only == 1:
 # job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)

 #
 # Do not touch any output files which are the same as any input
 # i.e. which are just being passed through
 #
 # list of input files
 real_input_file_names = set()
 for f in get_strings_in_flattened_sequence(i):
 real_input_file_names.add(os.path.realpath(f))

 #
 # touch files only
 #
 for f in get_strings_in_flattened_sequence(o):

 if os.path.realpath(f) in real_input_file_names:
 continue

 #
 # race condition still possible...
 #
 with open(f, 'a') as ff:
 os.utime(f, None)
 # if not os.path.exists(f):
 # open(f, 'w')
 # mtime = os.path.getmtime(f)
 # else:
 # os.utime(f, None)
 # mtime = os.path.getmtime(f)

 # job_history[f] = chksum # update file times and job details in
 # history

 #
 # register strings in output file for cleanup
 #
 for f in get_strings_in_flattened_sequence(o):
 register_cleanup(f, "file")

def job_wrapper_output_files(params, user_defined_work_func, register_cleanup, touch_files_only):
 """
 job wrapper for all that only deals with output files.

 run func on any output file if not up to date
 """
 job_wrapper_io_files(params, user_defined_work_func, register_cleanup, touch_files_only,
 output_files_only=True)

[docs]def job_wrapper_mkdir(params, user_defined_work_func, register_cleanup, touch_files_only):
 """
 Make missing directories including any intermediate directories on the specified path(s)
 """
 #
 # Just in case, swallow file exist errors because some other makedirs
 # might be subpath of this directory
 # Should not be necessary because of "sorted" in task_mkdir
 #
 #
 if len(params) == 1:
 dirs = params[0]

 # if there are two parameters, they are i/o, and the directories to be
 # created are the output
 elif len(params) >= 2:
 dirs = params[1]
 else:
 raise Exception("No arguments in mkdir check %s" % (params,))

 # get all file names in flat list
 dirs = get_strings_in_flattened_sequence(dirs)

 for d in dirs:
 try:
 # Please email the authors if an uncaught exception is raised here
 os.makedirs(d)
 register_cleanup(d, "makedirs")
 except:
 #
 # ignore exception if
 # exception == OSError + "File exists" or // Linux
 # exception == WindowsError + "file already exists" // Windows
 # Are other exceptions raised by other OS?
 #
 #
 exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
 # exceptionType == OSError and
 if "File exists" in str(exceptionValue):
 continue
 # exceptionType == WindowsError and
 elif "file already exists" in str(exceptionValue):
 continue
 raise

 # changed for compatibility with python 3.x
 # except OSError, e:
 # if "File exists" not in e:
 # raise

JOB_ERROR = 0
JOB_SIGNALLED_BREAK = 1
JOB_UP_TO_DATE = 2
JOB_COMPLETED = 3

t_job_result
Previously a collections.namedtuple (introduced in python 2.6)
Now using implementation from running
t_job_result = namedtuple('t_job_result',
'task_name state job_name return_value exception', verbose =1)
for compatibility with python 2.5
t_job_result = namedtuple('t_job_result',
 'task_name '
 'node_index state '
 'job_name '
 'return_value '
 'exception '
 'params '
 'unglobbed_params ')

def run_pooled_job_without_exceptions(process_parameters):
 """
 handles running jobs in parallel
 Make sure exceptions are caught here:
 Otherwise, these will kill the thread/process
 return any exceptions which will be rethrown at the other end:
 See ruffus_exceptions.RethrownJobError / run_all_jobs_in_task
 """
 # signal.signal(signal.SIGINT, signal.SIG_IGN)
 (params, unglobbed_params, task_name, node_index, job_name, job_wrapper, user_defined_work_func,
 job_limit_semaphore, death_event, touch_files_only) = process_parameters

 # #job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)
 # outfile = params[1] if len(params) > 1 else None # mkdir has no output
 # if not isinstance(outfile, list):
 # # outfile = [outfile]
 # for o in outfile:
 # job_history.pop(o, None) # remove outfile from history if it exists

 if job_limit_semaphore is None:
 job_limit_semaphore = do_nothing_semaphore()

 try:
 with job_limit_semaphore:
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write(
 ">" * 36 + "[[job_wrapper]]" + ">" * 27 + "\n")
 return_value = job_wrapper(params, user_defined_work_func,
 register_cleanup, touch_files_only)

 #
 # ensure one second between jobs
 #
 # if one_second_per_job:
 # time.sleep(1.01)
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write(
 "<" * 36 + "[[job_wrapper done]]" + "<" * 22 + "\n")
 return t_job_result(task_name, node_index, JOB_COMPLETED, job_name, return_value, None,
 params, unglobbed_params)
 except KeyboardInterrupt as e:
 # Reraise KeyboardInterrupt as a normal Exception.
 # Should never be necessary here
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write(
 "E" * 36 + "[[KeyboardInterrupt]]" + "E" * 21 + "\n")
 death_event.set()
 raise Ruffus_Keyboard_Interrupt_Exception("KeyboardInterrupt")
 except:
 # EXTRA pipeline_run DEBUGGING
 if EXTRA_PIPELINERUN_DEBUGGING:
 sys.stderr.write(
 "E" * 36 + "[[Other Interrupt]]" + "E" * 23 + "\n")
 # Wrap up one or more exceptions rethrown across process boundaries
 #
 # See multiprocessor.Server.handle_request/serve_client for an
 # analogous function
 exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
 exception_stack = traceback.format_exc()
 exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
 exception_value = str(exceptionValue)
 if len(exception_value):
 exception_value = "(%s)" % exception_value

 if exceptionType == Ruffus_Keyboard_Interrupt_Exception:
 death_event.set()
 job_state = JOB_SIGNALLED_BREAK
 elif exceptionType == ruffus_exceptions.JobSignalledBreak:
 job_state = JOB_SIGNALLED_BREAK
 else:
 job_state = JOB_ERROR
 return t_job_result(task_name, node_index, job_state, job_name, None,
 [task_name,
 job_name,
 exception_name,
 exception_value,
 exception_stack], params, unglobbed_params)

def subprocess_checkcall_wrapper(**named_args):
 """
 Splits string at semicolons and runs with subprocess.check_call
 """
 for cmd in named_args["command_str"].split(";"):
 cmd = cmd.replace("\n", " ").strip()
 if not len(cmd):
 continue
 cmd = cmd.format(**named_args)
 subprocess.check_call(cmd, shell=True)

def exec_string_as_task_func(input_args, output_args, **named_args):
 """
 Ruffus provided function for tasks which are just strings
 (no Python function provided)
 The task executor function is given as a paramter which is
 then called with the arguments.
 Convoluted but avoids special casing too much
 """
 if not "__RUFFUS_TASK_CALLBACK__" in named_args or \
 not callable(named_args["__RUFFUS_TASK_CALLBACK__"]):
 raise Exception("Missing call back function")
 if not "command_str" in named_args or \
 not isinstance(named_args["command_str"], (path_str_type,)):
 raise Exception("Missing call back function string")

 callback = named_args["__RUFFUS_TASK_CALLBACK__"]
 del named_args["__RUFFUS_TASK_CALLBACK__"]

 named_args["input"] = input_args
 named_args["output"] = output_args
 callback(**named_args)

todo
def register_cleanup(file_name, operation):
 pass

pipeline functions only have "name" as a named parameter
def get_name_from_args(named_args):
 if "name" in named_args:
 name = named_args["name"]
 del named_args["name"]
 return name
 else:
 return None

class Pipeline(dict):
 """

 Each Ruffus Pipeline object has to have a unique name. "main" is
 reserved for "main_pipeline", the default pipeline for all Ruffus
 decorators.
 """

 # dictionary of all pipelines
 pipelines = dict()
 cnt_mkdir = 0

 def __init__(self, name, *arg, **kw):
 # initialise dict
 super(Pipeline, self).__init__(*arg, **kw)

 # set of tasks
 self.tasks = set()
 self.task_names = set()

 # add self to list of all pipelines
 self.name = name
 self.original_name = name
 if name in Pipeline.pipelines:
 raise Exception("Error:\nDuplicate pipeline. "
 "A pipeline named '%s' already exists.\n" % name)
 Pipeline.pipelines[name] = self
 self.head_tasks = []
 self.tail_tasks = []
 self.lookup = dict()

 self.command_str_callback = subprocess_checkcall_wrapper
 self.job_state = "active"

 @classmethod
 def clear_all(cls):
 """clear all pipelines.
 """
 cls.pipelines = dict()

 def _create_task(self, task_func, task_name=None):
 """
 Create task with a function
 """

 #
 # If string, this is a command to be executed later
 # Derive task name from command
 #
 #
 if isinstance(task_func, (path_str_type,)):
 task_str = task_func
 task_func = exec_string_as_task_func
 if not task_name:
 elements = task_str.split()
 use_n_elements = 1
 while use_n_elements < len(elements):
 task_name = " ".join(elements[0:use_n_elements])
 if task_name not in self.task_names:
 break
 else:
 raise ruffus_exceptions.error_duplicate_task_name(
 "The task string '{}' is ambiguous for "
 "Pipeline '{}'. You must disambiguate "
 "explicitly with different task names ".format(
 task_str, self.name))
 return Task(task_func, task_name, self)

 #
 # Derive task name from Python Task function name
 #
 if not task_name:
 if task_func.__module__ == "__main__":
 task_name = task_func.__name__
 else:
 task_name = str(task_func.__module__) + \
 "." + task_func.__name__

 if task_name not in self:
 return Task(task_func, task_name, self)

 # task_name already there as the identifying task_name.
 # If the task_func also matches everything is fine
 elif (task_name in self.task_names and
 self[task_name].user_defined_work_func == task_func):
 return self[task_name]

 # If the task name is already taken but with a different function,
 # this will blow up
 # But if the function is being reused and with a previously different
 # task name then OK
 else:
 return Task(task_func, task_name, self)

 def _complete_task_setup(self, processed_tasks):
 """
 Finishes initialising all tasks
 Make sure all tasks in dependency list are linked to real functions
 """

 processed_pipelines = set([self.name])
 unprocessed_tasks = deque(self.tasks)
 while len(unprocessed_tasks):
 task = unprocessed_tasks.popleft()
 if task in processed_tasks:
 continue
 processed_tasks.add(task)
 for ancestral_task in task._complete_setup():
 if ancestral_task not in processed_tasks:
 unprocessed_tasks.append(ancestral_task)
 processed_pipelines.add(ancestral_task.pipeline.name)
 #
 # some jobs single state status mirrors parent's state
 # and parent task not known until dependencies resolved
 # Is this legacy code?
 # Breaks @merge otherwise
 #
 if isinstance(task._is_single_job_single_output, Task):
 task._is_single_job_single_output = \
 task._is_single_job_single_output._is_single_job_single_output

 for pipeline_name in list(processed_pipelines):
 if pipeline_name != self.name:
 processed_pipelines |= self.pipelines[pipeline_name]._complete_task_setup(
 processed_tasks)

 return processed_pipelines

 def set_command_str_callback(self, command_str_callback):
 if not callable(command_str_callback):
 raise Exception(
 "set_command_str_callback() takes a python function or a callable object.")
 self.command_str_callback = command_str_callback

 def get_head_tasks(self):
 """
 Return tasks at the head of the pipeline,
 i.e. with only descendants/dependants
 N.B. Head and Tail sets can overlap

 Most of the time when self.head_tasks == [], it has been left undefined by mistake.
 So we usually throw an exception at the point of use
 """
 return self.head_tasks

 def set_head_tasks(self, head_tasks):
 """
 Specifies tasks at the head of the pipeline,
 i.e. with only descendants/dependants
 """
 if not isinstance(head_tasks, (list,)):
 raise Exception("Pipelines['{pipeline_name}'].set_head_tasks() expects a "
 "list not {head_tasks_type}".format(pipeline_name=self.name,
 head_tasks_type=type(head_tasks)))

 for tt in head_tasks:
 if not isinstance(tt, (Task,)):
 raise Exception("Pipelines['{pipeline_name}'].set_head_tasks() expects a "
 "list of tasks not {task_type} {task}".format(pipeline_name=self.name,
 task_type=type(
 tt),
 task=1))
 self.head_tasks = head_tasks

 def get_tail_tasks(self):
 """
 Return tasks at the tail of the pipeline,
 i.e. without descendants/dependants
 N.B. Head and Tail sets can overlap

 Most of the time when self.tail_tasks == [],
 it has been left undefined by mistake.
 So we usually throw an exception at the point of use
 """
 return self.tail_tasks

 def set_tail_tasks(self, tail_tasks):
 """
 Specifies tasks at the tail of the pipeline,
 i.e. with only descendants/dependants
 """
 self.tail_tasks = tail_tasks

 def set_input(self, **args):
 """
 Change the input parameter(s) of the designated "head" tasks of the pipeline
 """
 if not len(self.get_head_tasks()):
 raise ruffus_exceptions.error_no_head_tasks("Pipeline '{pipeline_name}' has no head tasks defined.\n"
 "Which task in '{pipeline_name}' do you want "
 "to set_input() for?".format(pipeline_name=self.name))

 for tt in self.get_head_tasks():
 tt.set_input(**args)

 def set_output(self, **args):
 """
 Change the output parameter(s) of the designated "head" tasks of the pipeline
 """
 if not len(self.get_head_tasks()):
 raise ruffus_exceptions.error_no_head_tasks("Pipeline '{pipeline_name}' has no head tasks defined.\n"
 "Which task in '{pipeline_name}' do you want "
 "to set_output() for?".format(pipeline_name=self.name))

 for tt in self.get_head_tasks():
 tt.set_output(**args)

 def suspend_jobs(self):
 self.job_state = "suspended"

 def resume_jobs(self):
 self.job_state = "active"

 def is_job_suspended(self):
 return self.job_state == "suspended"

 def clone(self, new_name, *arg, **kw):
 """
 Make a deep copy of the pipeline
 """

 # setup new pipeline
 new_pipeline = Pipeline(new_name, *arg, **kw)

 # set of tasks
 new_pipeline.tasks = set(task._clone(new_pipeline)
 for task in self.tasks)
 new_pipeline.task_names = set(self.task_names)

 # so keep original name after a series of cloning operations
 new_pipeline.original_name = self.original_name

 # lookup tasks in new pipeline
 new_pipeline.head_tasks = [new_pipeline[t._name]
 for t in self.head_tasks]
 new_pipeline.tail_tasks = [new_pipeline[t._name]
 for t in self.tail_tasks]

 # do not copy a suspended state, but always set to active
 new_pipeline.state = "active"
 return new_pipeline

 def mkdir(self, *unnamed_args, **named_args):
 """
 Makes directories each incoming input to a corresponding output
 This is a One to One operation
 """
 name = get_name_from_args(named_args)
 # func is a placeholder...
 if name is None:
 self.cnt_mkdir += 1
 if self.cnt_mkdir == 1:
 name = "mkdir"
 else:
 name = "mkdir # %d" % self.cnt_mkdir
 task = self._create_task(task_func=job_wrapper_mkdir, task_name=name)
 task.created_via_decorator = False
 task.syntax = "pipeline.mkdir"
 task.description_with_args_placeholder = "%s(name = %r, %%s)" % (
 task.syntax, task._get_display_name())
 task._prepare_mkdir(unnamed_args, named_args,
 task.description_with_args_placeholder)
 return task

 def _do_create_task_by_OOP(self, task_func, named_args, syntax):
 """
 Helper function for
 Pipeline.transform
 Pipeline.originate
 pipeline.split
 pipeline.subdivide
 pipeline.parallel
 pipeline.files
 pipeline.combinations_with_replacement
 pipeline.combinations
 pipeline.permutations
 pipeline.product
 pipeline.collate
 pipeline.merge
 """
 name = get_name_from_args(named_args)

 # if task_func is a string, will
 # 1) set self.task_func = exec_string_as_task_func
 # 2) set self.name if necessary to the first unambigous words of the the command_str
 # 2) set self.func_description to the command_str
 task = self._create_task(task_func, name)

 task.created_via_decorator = False
 task.syntax = syntax
 if isinstance(task_func, (path_str_type,)):
 task_func_name = task._name
 else:
 task_func_name = task_func.__name__

 task.description_with_args_placeholder = "{syntax}(name = {task_display_name!r}, task_func = {task_func_name}, %s)" \
 .format(syntax=syntax,
 task_display_name=task._get_display_name(),
 task_func_name=task_func_name,)

 if isinstance(task_func, (path_str_type,)):
 #
 # Make sure extras is dict
 #
 if "extras" in named_args:
 if not isinstance(named_args["extras"], dict):
 raise ruffus_exceptions.error_executable_str((task.description_with_args_placeholder % "...") +
 "\n requires a dictionary for named parameters. " +
 "For example:\n" +
 task.description_with_args_placeholder %
 "extras = {my_param = 45, her_param = 'whatever'}")
 else:
 named_args["extras"] = dict()
 named_args["extras"]["command_str"] = task_func
 # named_args["extras"]["__RUFFUS_TASK_CALLBACK__"] = pipeline.command_str_callback

 return task

 def lookup_task_from_name(self, task_name, default_module_name):
 """
 If lookup returns None, means ambiguous: do nothing
 Only ever returns a list of one
 """
 multiple_tasks = []

 # Does the unqualified name uniquely identify?
 if task_name in self.lookup:
 if len(self.lookup[task_name]) == 1:
 return self.lookup[task_name]
 else:
 multiple_tasks = self.lookup[task_name]

 # Even if the unqualified name does not uniquely identify,
 # maybe the qualified name does
 full_qualified_name = default_module_name + "." + task_name
 if full_qualified_name in self.lookup:
 if len(self.lookup[full_qualified_name]) == 1:
 return self.lookup[full_qualified_name]
 else:
 multiple_tasks = self.lookup[task_name]

 # Nothing matched
 if not multiple_tasks:
 return []

 # If either the qualified or unqualified name is ambiguous, throw...
 task_names = ",".join(t._name for t in multiple_tasks)
 raise ruffus_exceptions.error_ambiguous_task("%s is ambiguous. Which do you mean? (%s)."
 % (task_name, task_names))

 def follows(self, task_func, *unnamed_args, **named_args):
 """
 Transforms each incoming input to a corresponding output
 This is a One to One operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.follows")
 task.deferred_follow_params.append([task.description_with_args_placeholder, False,
 unnamed_args])
 # task._connect_parents(task.description_with_args_placeholder, False,
 # unnamed_args)
 return task

 def check_if_uptodate(self, task_func, func, **named_args):
 """
 Specifies how a task is to be checked if it needs to be rerun (i.e. is
 up-to-date).
 func returns true if input / output files are up to date
 func takes as many arguments as the task function
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "check_if_uptodate")
 return task.check_if_uptodate(func)

 def graphviz(self, task_func, *unnamed_args, **named_args):
 """
 Transforms each incoming input to a corresponding output
 This is a One to One operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.graphviz")
 task.graphviz_attributes = named_args
 if len(unnamed_args):
 raise TypeError("Only named arguments expected in :" +
 task.description_with_args_placeholder % unnamed_args)
 return task

 def transform(self, task_func, *unnamed_args, **named_args):
 """
 Transforms each incoming input to a corresponding output
 This is a One to One operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.transform")
 task._prepare_transform(unnamed_args, named_args)
 return task

 def originate(self, task_func, *unnamed_args, **named_args):
 """
 Originates a new set of output files,
 one output per call to the task function
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.originate")
 task._prepare_originate(unnamed_args, named_args)
 return task

 def split(self, task_func, *unnamed_args, **named_args):
 """
 Splits a single set of input files into multiple output file names,
 where the number of output files may not be known beforehand.
 This is a One to Many operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.split")
 task._prepare_split(unnamed_args, named_args)
 return task

 def subdivide(self, task_func, *unnamed_args, **named_args):
 """
 Subdivides a each set of input files into multiple output file names,
 where the number of output files may not be known beforehand.
 This is a Many to Even More operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.subdivide")
 task._prepare_subdivide(unnamed_args, named_args)
 return task

 def merge(self, task_func, *unnamed_args, **named_args):
 """
 Merges multiple input files into a single output.
 This is a Many to One operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.merge")
 task._prepare_merge(unnamed_args, named_args)
 return task

 def collate(self, task_func, *unnamed_args, **named_args):
 """
 Collates each set of multiple matching input files into an output.
 This is a Many to Fewer operation
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.collate")
 task._prepare_collate(unnamed_args, named_args)
 return task

 def product(self, task_func, *unnamed_args, **named_args):
 """
 All-vs-all Product between items from each set of inputs
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.product")
 task._prepare_product(unnamed_args, named_args)
 return task

 def permutations(self, task_func, *unnamed_args, **named_args):
 """
 Permutations between items from a set of inputs
 * k-length tuples
 * all possible orderings
 * no self vs self
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.permutations")
 task._prepare_combinatorics(
 unnamed_args, named_args, ruffus_exceptions.error_task_permutations)
 return task

 def combinations(self, task_func, *unnamed_args, **named_args):
 """
 Combinations of items from a set of inputs
 * k-length tuples
 * Single (sorted) ordering, i.e. AB is the same as BA,
 * No repeats. No AA, BB
 For Example:
 combinations("ABCD", 3) = ['ABC', 'ABD', 'ACD', 'BCD']
 combinations("ABCD", 2) = ['AB', 'AC', 'AD', 'BC', 'BD', 'CD']
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.combinations")
 task._prepare_combinatorics(
 unnamed_args, named_args, ruffus_exceptions.error_task_combinations)
 return task

 def combinations_with_replacement(self, task_func, *unnamed_args,
 **named_args):
 """
 Combinations with replacement of items from a set of inputs
 * k-length tuples
 * Single (sorted) ordering, i.e. AB is the same as BA,
 * Repeats. AA, BB, AAC etc.
 For Example:
 combinations_with_replacement("ABCD", 2) = [
 'AA', 'AB', 'AC', 'AD',
 'BB', 'BC', 'BD',
 'CC', 'CD',
 'DD']
 combinations_with_replacement("ABCD", 3) = [
 'AAA', 'AAB', 'AAC', 'AAD',
 'ABB', 'ABC', 'ABD',
 'ACC', 'ACD',
 'ADD',
 'BBB', 'BBC', 'BBD',
 'BCC', 'BCD',
 'BDD',
 'CCC', 'CCD',
 'CDD',
 'DDD']
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "combinations_with_replacement")
 task._prepare_combinatorics(unnamed_args, named_args,
 ruffus_exceptions.error_task_combinations_with_replacement)
 return task

 def files(self, task_func, *unnamed_args, **named_args):
 """
 calls user function in parallel
 with either each of a list of parameters
 or using parameters generated by a custom function

 In the parameter list,
 The first two items of each set of parameters must
 be input/output files or lists of files or Null
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.files")
 task._prepare_files(unnamed_args, named_args)
 return task

 def parallel(self, task_func, *unnamed_args, **named_args):
 """
 calls user function in parallel
 with either each of a list of parameters
 or using parameters generated by a custom function
 """
 task = self._do_create_task_by_OOP(
 task_func, named_args, "pipeline.parallel")
 task._prepare_parallel(unnamed_args, named_args)
 return task

 # Forwarding functions. Should bring procedural function here and
 # forward from the other direction?
 def run(self, *unnamed_args, **named_args):
 if "pipeline" not in named_args:
 named_args["pipeline"] = self
 pipeline_run(*unnamed_args, **named_args)

 def printout(self, *unnamed_args, **named_args):
 if "pipeline" not in named_args:
 named_args["pipeline"] = self
 pipeline_printout(*unnamed_args, **named_args)

 def get_task_names(self, *unnamed_args, **named_args):
 if "pipeline" not in named_args:
 named_args["pipeline"] = self
 pipeline_get_task_names(*unnamed_args, **named_args)

 def printout_graph(self, *unnamed_args, **named_args):
 if "pipeline" not in named_args:
 named_args["pipeline"] = self
 pipeline_printout_graph(*unnamed_args, **named_args)

Global default shared pipeline (used for decorators)
main_pipeline = Pipeline(name="main")

def lookup_unique_task_from_func(task_func, default_pipeline_name="main"):
 """
 Go through all pipelines and match task_func to find a unique task
 Throw exception if ambiguous
 """

 def unique_task_from_func_in_pipeline(task_func, pipeline):
 if task_func in pipeline.lookup:
 if len(pipeline.lookup[task_func]) == 1:
 # Found task!
 return pipeline.lookup[task_func][0]

 # Found too many tasks! Ambiguous...
 task_names = ", ".join(
 task._name for task in pipeline.lookup[task_func])
 raise ruffus_exceptions.error_ambiguous_task(
 "Function def %s(...): is used by multiple tasks (%s). Which one do you mean?."
 % (task_func.__name__, task_names))
 return None

 #
 # Iterate through all pipelines starting with the specified pipeline
 #
 task = unique_task_from_func_in_pipeline(
 task_func, Pipeline.pipelines[default_pipeline_name])
 if task:
 return task

 #
 # Sees if function uniquely identifies a single task across pipelines
 #
 found_tasks = []
 found_pipelines = []
 for pipeline in Pipeline.pipelines.values():
 task = unique_task_from_func_in_pipeline(task_func, pipeline)
 if task:
 found_tasks.append(task)
 found_pipelines.append(pipeline)

 if len(found_tasks) == 1:
 return found_tasks[0]

 if len(found_tasks) > 1:
 raise ruffus_exceptions.error_ambiguous_task("Task Name %s is ambiguous and specifies different tasks "
 "across multiple pipelines (%s)."
 % (task_func.__name__, ",".join(found_pipelines)))

 return None

def lookup_tasks_from_name(task_name, default_pipeline_name, default_module_name="__main__",
 pipeline_names_as_alias_to_all_tasks=False):
 """

 Tries:
 (1) Named pipeline in the format pipeline::task_name
 (2) tasks matching task_name in default_pipeline_name
 (3) pipeline names matching task_name
 (4) if task_name uniquely identifies any task in all other pipelines...

 Only returns multiple tasks if (3) task_name is the name of a pipeline
 """

 # Lookup the task from the function or task name
 pipeline_name, task_name = re.match("(?:(.+)::)?(.*)", task_name).groups()

 #
 # (1) Look in specified pipeline
 # Will blow up if task_name is ambiguous
 #
 if pipeline_name:
 if pipeline_name not in Pipeline.pipelines:
 raise ruffus_exceptions.error_not_a_pipeline("%s is not a pipeline." % pipeline_name)
 pipeline = Pipeline.pipelines[pipeline_name]
 return pipeline.lookup_task_from_name(task_name, default_module_name)

 #
 # (2) Try default pipeline
 # Will blow up if task_name is ambiguous
 #
 if default_pipeline_name not in Pipeline.pipelines:
 raise ruffus_exceptions.error_not_a_pipeline(
 "%s is not a pipeline." % default_pipeline_name)
 pipeline = Pipeline.pipelines[default_pipeline_name]
 tasks = pipeline.lookup_task_from_name(task_name, default_module_name)
 if tasks:
 return tasks

 # (3) task_name is actually the name of a pipeline
 # Alias for pipeline.get_tail_tasks()
 # N.B. This is the *only* time multiple tasks might be returned
 #
 if task_name in Pipeline.pipelines:
 if pipeline_names_as_alias_to_all_tasks:
 return Pipeline.pipelines[task_name].tasks
 elif len(Pipeline.pipelines[task_name].get_tail_tasks()):
 return Pipeline.pipelines[task_name].get_tail_tasks()
 else:
 raise ruffus_exceptions.error_no_tail_tasks(
 "Pipeline %s has no tail tasks defined. Which task do you "
 "mean when you specify the whole pipeline as a dependency?" % task_name)

 #
 # (4) Try all other pipelines
 # Will blow up if task_name is ambiguous
 #
 found_tasks = []
 found_pipelines = []
 for pipeline_name, pipeline in Pipeline.pipelines.items():
 tasks = pipeline.lookup_task_from_name(task_name, default_module_name)
 if tasks:
 found_tasks.append(tasks)
 found_pipelines.append(pipeline_name)

 # unambiguous: good
 if len(found_tasks) == 1:
 return found_tasks[0]

 # ambiguous: bad
 if len(found_tasks) > 1:
 raise ruffus_exceptions.error_ambiguous_task(
 "Task Name %s is ambiguous and specifies different tasks across "
 "several pipelines (%s)." % (task_name, ",".join(found_pipelines)))

 # Nothing found
 return []

def lookup_tasks_from_user_specified_names(task_description, task_names,
 default_pipeline_name="main",
 default_module_name="__main__",
 pipeline_names_as_alias_to_all_tasks=False):
 """
 Given a list of task names, look up the corresponding tasks
 Will just pass through if the task_name is already a task
 """

 #
 # In case we are given a single item instead of a list
 #
 if not isinstance(task_names, (list, tuple)):
 task_names = [task_names]

 task_list = []

 for task_name in task_names:

 # "task_name" is a Task or pipeline, add those
 if isinstance(task_name, Task):
 task_list.append(task_name)
 continue

 elif isinstance(task_name, Pipeline):
 if pipeline_names_as_alias_to_all_tasks:
 task_list.extend(task_name.tasks)
 continue
 # use tail tasks
 elif len(task_name.get_tail_tasks()):
 task_list.extend(task_name.get_tail_tasks())
 continue
 # no tail task
 else:
 raise ruffus_exceptions.error_no_tail_tasks("Pipeline %s has no 'tail tasks'. Which task do you mean"
 " when you specify the whole pipeline?" % task_name.name)

 if isinstance(task_name, Callable):
 # blows up if ambiguous
 task = lookup_unique_task_from_func(
 task_name, default_pipeline_name)
 # blow up for unwrapped function
 if not task:
 raise ruffus_exceptions.error_function_is_not_a_task(
 ("Function def %s(...): is not a Ruffus task." % task_func.__name__) +
 " The function needs to have a ruffus decoration like "
 "'@transform', or be a member of a ruffus.Pipeline().")

 task_list.append(task)
 continue

 # some kind of string: task or func or pipeline name?
 if isinstance(task_name, path_str_type):

 # Will throw Exception if ambiguous
 tasks = lookup_tasks_from_name(
 task_name, default_pipeline_name, default_module_name,
 pipeline_names_as_alias_to_all_tasks)
 # not found
 if not tasks:
 raise ruffus_exceptions.error_node_not_task("%s task '%s' is not a pipelined task in Ruffus. Is it "
 "spelt correctly ?" % (task_description, task_name))
 task_list.extend(tasks)
 continue

 else:
 raise TypeError(
 "Expecting a string or function, or a Ruffus Task or Pipeline object")
 return task_list

class Task(node):

 """

 * Represents each stage of a pipeline.
 * Associated with a single python function.
 * Identified uniquely within the pipeline by its name.

 """

 # DEBUGGG
 # def __str__ (self):
 # return "Task = <%s>" % self._get_display_name()

 _action_names = ["unspecified",
 "task",
 "task_files_re",
 "task_split",
 "task_merge",
 "task_transform",
 "task_collate",
 "task_files_func",
 "task_files",
 "task_mkdir",
 "task_parallel",
 "task_active_if",
 "task_product",
 "task_permutations",
 "task_combinations",
 "task_combinations_with_replacement",
 "task_subdivide",
 "task_originate",
 "task_graphviz",
]
 # ENUMS
 (_action_unspecified,
 _action_task,
 _action_task_files_re,
 _action_task_split,
 _action_task_merge,
 _action_task_transform,
 _action_task_collate,
 _action_task_files_func,
 _action_task_files,
 _action_mkdir,
 _action_task_parallel,
 _action_active_if,
 _action_task_product,
 _action_task_permutations,
 _action_task_combinations,
 _action_task_combinations_with_replacement,
 _action_task_subdivide,
 _action_task_originate,
 _action_task_graphviz) = range(19)

 (_multiple_jobs_outputs,
 _single_job_single_output,
 _job_single_matches_parent) = range(3)

 _job_limit_semaphores = {}

 # ___

 # _get_action_name

 # ___
 def _get_action_name(self):
 return Task._action_names[self._action_type]

 # ___

 # __init__

 # ___
 def __init__(self, func, task_name, pipeline=None, command_str=None):
 """
 * Creates a Task object with a specified python function and task name
 * The type of the Task (whether it is a transform or merge or collate
 etc. operation) is specified subsequently. This is because Ruffus
 decorators do not have to be specified in order, and we don't
 know ahead of time.
 """
 if pipeline is None:
 pipeline = main_pipeline
 self.pipeline = pipeline
 # no function: just string
 if command_str is not None:
 self.func_module_name = ""
 self.func_name = ""
 self.func_description = command_str
 else:
 self.func_module_name = str(func.__module__)
 self.func_name = func.__name__
 # convert description into one line
 self.func_description = re.sub(
 r"\n\s+", " ", func.__doc__).strip() if func.__doc__ else ""

 if not task_name:
 task_name = self.func_module_name + "." + self.func_name

 node.__init__(self, task_name)
 self._action_type = Task._action_task
 self._action_type_desc = Task._action_names[self._action_type]

 # Each task has its own checksum level
 # At the moment this is really so multiple pipelines in the same
 # script can have different checksum levels
 # Though set by pipeline_xxxx functions, have initial valid value so
 # unit tests work :-|
 self.checksum_level = CHECKSUM_FILE_TIMESTAMPS
 self.param_generator_func = None
 self.needs_update_func = None
 self.job_wrapper = job_wrapper_generic

 #
 self.job_descriptor = generic_job_descriptor

 # jobs which produce a single output.
 # special handling for task.get_output_files for dependency chaining
 self._is_single_job_single_output = self._multiple_jobs_outputs
 self.single_multi_io = self._many_to_many

 # function which is decorated and does the actual work
 self.user_defined_work_func = func

 # functions which will be called when task completes
 self.posttask_functions = []

 # give makedir automatically made parent tasks unique names
 self.cnt_task_mkdir = 0

 # whether only task function itself knows what output it will produce
 # i.e. output is a glob or something similar
 self.indeterminate_output = 0

 # cache output file names here
 self.output_filenames = None

 # semaphore name must be unique
 self.semaphore_name = pipeline.name + ":" + task_name

 # do not test for whether task is active
 self.active_if_checks = None

 # extra flag for outputfiles
 self.is_active = True

 # Created via decorator or OO interface
 # so that display_name looks more natural
 self.created_via_decorator = False

 # Finish setting up task
 self._setup_task_func = Task._do_nothing_setup

 # Finish setting up task
 self.deferred_follow_params = []

 # Finish setting up task
 self.parsed_args = {}
 self.error_type = None

 # @split or pipeline.split etc.
 self.syntax = ""

 self.description_with_args_placeholder = "%s"

 # whether task has a (re-specifiable) input parameter
 self.has_input_param = True
 self.has_pipeline_in_input_param = False

 # add to pipeline's lookup
 # this code is here rather than the pipeline so that current unittests
 # do not need to bother about pipeline
 if task_name in self.pipeline.task_names:
 raise ruffus_exceptions.error_duplicate_task_name("Same task name %s specified multiple times in the "
 "same pipeline (%s)" % (task_name, self.pipeline.name))

 self.pipeline.tasks.add(self)

 # task_name is always a unique lookup and overrides everything else
 self.pipeline[task_name] = self
 self.pipeline.lookup[task_name] = [self]
 self.pipeline.task_names.add(task_name)

 self.command_str_callback = "PIPELINE"

 #
 # Allow pipeline to lookup task by
 # 1) Func
 # 2) task name
 # 3) func name
 #
 # Ambiguous func names returns an empty list []
 #

 for lookup in (func, self.func_name, self.func_module_name + "." + self.func_name):
 # don't add to lookup if this conflicts with a task_name which is
 # always unique and overriding
 if lookup == ".":
 continue
 if lookup not in self.pipeline.task_names:
 # non-unique map
 if lookup in self.pipeline.lookup:
 self.pipeline.lookup[lookup].append(self)
 # remove non-uniques from Pipeline
 if lookup in self.pipeline:
 del self.pipeline[lookup]
 else:
 self.pipeline.lookup[lookup] = [self]
 self.pipeline[lookup] = self

 # ___

 # _clone

 # ___
 def _clone(self, new_pipeline):
 """
 * Clones a Task object from self
 """
 new_task = Task(self.user_defined_work_func, self._name, new_pipeline)
 new_task.command_str_callback = self.command_str_callback
 new_task._action_type = self._action_type
 new_task._action_type_desc = self._action_type_desc
 new_task.checksum_level = self.checksum_level
 new_task.param_generator_func = self.param_generator_func
 new_task.needs_update_func = self.needs_update_func
 new_task.job_wrapper = self.job_wrapper
 new_task.job_descriptor = self.job_descriptor
 new_task._is_single_job_single_output = self._is_single_job_single_output
 new_task.single_multi_io = self.single_multi_io
 new_task.posttask_functions = copy.deepcopy(self.posttask_functions)
 new_task.cnt_task_mkdir = self.cnt_task_mkdir
 new_task.indeterminate_output = self.indeterminate_output
 new_task.semaphore_name = self.semaphore_name
 new_task.is_active = self.is_active
 new_task.created_via_decorator = self.created_via_decorator
 new_task._setup_task_func = self._setup_task_func
 new_task.error_type = self.error_type
 new_task.syntax = self.syntax
 new_task.description_with_args_placeholder = \
 self.description_with_args_placeholder.replace(
 self.pipeline.name, new_pipeline.name)
 new_task.has_input_param = self.has_input_param
 new_task.has_pipeline_in_input_param = self.has_pipeline_in_input_param
 new_task.output_filenames = copy.deepcopy(self.output_filenames)
 new_task.active_if_checks = copy.deepcopy(self.active_if_checks)
 new_task.parsed_args = copy.deepcopy(self.parsed_args)
 new_task.deferred_follow_params = copy.deepcopy(
 self.deferred_follow_params)

 return new_task

 # ___

 # command_str_callback

 # ___
 def set_command_str_callback(self, command_str_callback):
 if not callable(command_str_callback):
 raise Exception(
 "set_command_str_callback() takes a python function or a callable object.")
 self.command_str_callback = command_str_callback

 # ___

 # set_output

 # ___

 def set_output(self, **args):
 """
 Changes output parameter(s) for originate
 set_input(output = "test.txt")
 """

 if self.syntax not in ("pipeline.originate", "@originate"):
 raise ruffus_exceptions.error_set_output("Can only set output for originate tasks")
 #
 # For product: filter parameter is a list of formatter()
 #
 if "output" in args:
 self.parsed_args["output"] = args["output"]
 del args["output"]
 else:
 raise ruffus_exceptions.error_set_output(
 "Missing the output argument in set_input(output=xxx)")

 # Non "input" arguments
 if len(args):
 raise ruffus_exceptions.error_set_output("Unexpected argument name in set_output(%s). "
 "Only expecting output=xxx." % (args,))
 # ___

 # set_input

 # ___
 def set_input(self, **args):
 """
 Changes any of the input parameter(s) of the task
 For example:
 set_input(input = "test.txt")
 set_input(input2 = "b.txt")
 set_input(input = "a.txt", input2 = "b.txt")
 """
 #
 # For product: filter parameter is a list of formatter()
 #
 if ("filter" in self.parsed_args and
 isinstance(self.parsed_args["filter"], list)):
 # the number of input is the count of filter
 cnt_expected_input = len(self.parsed_args["filter"])

 # make sure the parsed parameter argument is setup, with empty
 # lists if necessary
 # Should have been done already...
 # if self.parsed_args["input"] is None:
 # self.parsed_args["input"] = [[]
 # for i in range(cnt_expected_input)]

 # update each element of the list accordingly
 # removing args so we can check if there is anything left over
 for inputN in range(cnt_expected_input):
 input_name = "input%d" % (inputN + 1) if inputN else "input"
 if input_name in args:
 self.parsed_args["input"][inputN] = args[input_name]
 del args[input_name]

 if len(args):
 raise ruffus_exceptions.error_set_input("Unexpected arguments in set_input(%s). "
 "Only expecting inputN=xxx" % (args,))
 return

 if "input" in args:
 self.parsed_args["input"] = args["input"]
 del args["input"]
 else:
 raise ruffus_exceptions.error_set_input(
 "Missing the input argument in set_input(input=xxx)")

 # Non "input" arguments
 if len(args):
 raise ruffus_exceptions.error_set_input("Unexpected argument name in set_input(%s). "
 "Only expecting input=xxx." % (args,))

 # ___

 # _init_for_pipeline

 # ___
 def _init_for_pipeline(self):
 """
 Initialize variables for pipeline run / printout

 BEWARE

 Because state is stored, ruffus is *not* reentrant.

 TODO: Need to create runtime DAG to mirror task DAG which holds
 output_filenames to be reentrant

 BEWARE

 """

 # cache output file names here
 self.output_filenames = None

 # ___

 # _set_action_type

 # ___
 def _set_action_type(self, new_action_type):
 """
 Save how this task
 1) tests whether it is up-to-date and
 2) handles input/output files

 Checks that the task has not been defined with conflicting actions

 """
 if self._action_type not in (Task._action_unspecified, Task._action_task):
 old_action = Task._action_names[self._action_type]
 new_action = Task._action_names[new_action_type]
 actions = " and ".join(list(set((old_action, new_action))))
 raise ruffus_exceptions.error_decorator_args("Duplicate task for:\n\n%s\n\n"
 "This has already been specified with a the same name "
 "or function\n"
 "(%r, %s)\n" %
 (self.description_with_args_placeholder % "...",
 self._get_display_name(),
 actions))
 self._action_type = new_action_type
 self._action_type_desc = Task._action_names[new_action_type]

 def _get_job_name(self, descriptive_param, verbose_abbreviated_path, runtime_data):
 """
 Use job descriptor to return short name for job including any parameters

 runtime_data is not (yet) used but may be used to add context in future
 """
 return self.job_descriptor(descriptive_param, verbose_abbreviated_path, runtime_data)[0]

 def _get_display_name(self):
 """
 Returns task name, removing __main__. namespace or main. if present
 """
 if self.pipeline.name != "main":
 return "{pipeline_name}::{task_name}".format(pipeline_name=self.pipeline.name,
 task_name=self._name.replace("__main__.", "").replace("main::", ""))
 else:
 return self._name.replace("__main__.", "").replace("main::", "")

 def _get_decorated_function(self):
 """
 Returns name of task function, removing __main__ namespace if necessary
 If not specified using decorator notation, returns empty string
 N.B. Returns trailing new line

 """
 if not self.created_via_decorator:
 return ""

 func_name = (self.func_module_name + "." +
 self.func_name) \
 if self.func_module_name != "__main__" else self.func_name
 return "def %s(...):\n ...\n" % func_name

 def _update_active_state(self):
 # If has an @active_if decorator, check if the task needs to be run
 # @active_if parameters may be call back functions or booleans
 if (self.active_if_checks is not None and
 any(not arg() if isinstance(arg, Callable) else not arg
 for arg in self.active_if_checks)):
 # flip is active to false.
 # (get_output_files() will return empty if inactive)
 # Remember each iteration of pipeline_printout pipeline_run
 # will have another bite at changing this value
 self.is_active = False
 else:
 # flip is active to True so that downstream dependencies will be
 # correct (get_output_files() will return empty if inactive)
 # Remember each iteration of pipeline_printout pipeline_run will
 # have another bite at changing this value
 self.is_active = True

 # This code will look much better once we have job level
 # dependencies pipeline_run has dependencies percolating
 # up/down. Don't want to recreate all the logic here
 def _printout(self, runtime_data, force_rerun, job_history, task_is_out_of_date, verbose=1,
 verbose_abbreviated_path=2, indent=4):
 """
 Print out all jobs for this task

 verbose =
 level 1 : logs Out-of-date Task names
 level 2 : logs All Tasks (including any task function
 docstrings)
 level 3 : logs Out-of-date Jobs in Out-of-date Tasks, no
 explanation
 level 4 : logs Out-of-date Jobs in Out-of-date Tasks,
 saying why they are out of date (include only
 list of up-to-date tasks)
 level 5 : All Jobs in Out-of-date Tasks (include only list
 of up-to-date tasks)
 level 6 : All jobs in All Tasks whether out of date or not
 level 7 : Show file modification times for All jobs in All Tasks

 """

 def _get_job_names(unglobbed_params, indent_str):
 job_names = self.job_descriptor(
 unglobbed_params, verbose_abbreviated_path, runtime_data)[1]
 if len(job_names) > 1:
 job_names = ([indent_str + job_names[0]] +
 [indent_str + " " + jn for jn in job_names[1:]])
 else:
 job_names = ([indent_str + job_names[0]])
 return job_names

 if not verbose:
 return []

 indent_str = ' ' * indent

 messages = []

 # LOGGER: level 1 : logs Out-of-date Tasks (names and warnings)

 messages.append("Task = %r %s " % (self._get_display_name(),
 (" >>Forced to rerun<<" if force_rerun else "")))
 if verbose == 1:
 return messages

 # LOGGER: level 2 : logs All Tasks (including any task function
 # docstrings)
 if verbose >= 2 and len(self.func_description):
 messages.append(indent_str + '"' + self.func_description + '"')

 #
 # single job state
 #
 if verbose >= 10:
 if self._is_single_job_single_output == self._single_job_single_output:
 messages.append(" Single job single output")
 elif self._is_single_job_single_output == self._multiple_jobs_outputs:
 messages.append(" Multiple jobs Multiple outputs")
 else:
 messages.append(" Single jobs status depends on %r" %
 self._is_single_job_single_output._get_display_name())

 # LOGGER: No job if less than 2
 if verbose <= 2:
 return messages

 # increase indent for jobs up to date status
 indent_str += " " * 3

 #
 # If has an @active_if decorator, check if the task needs to be run
 # @active_if parameters may be call back functions or booleans
 #
 if not self.is_active:
 # LOGGER
 if verbose <= 3:
 return messages
 messages.append(indent_str + "Task is inactive")
 # add spacer line
 messages.append("")
 return messages

 #
 # No parameters: just call task function
 #
 if self.param_generator_func is None:
 # LOGGER
 if verbose <= 3:
 return messages

 #
 # needs update func = None: always needs update
 #
 if self.needs_update_func is None:
 messages.append(
 indent_str + "Task needs update: No func to check if up-to-date.")
 return messages

 if self.needs_update_func == needs_update_check_modify_time:
 needs_update, msg = self.needs_update_func(
 task=self, job_history=job_history,
 verbose_abbreviated_path=verbose_abbreviated_path,
 return_file_dates_when_uptodate=verbose > 6)
 else:
 needs_update, msg = self.needs_update_func()

 if needs_update:
 messages.append(indent_str + "Task needs update: %s" % msg)
 elif verbose > 6:
 messages.append(indent_str + "Task %s" % msg)
 #
 # Get rid of up-to-date messages:
 # Superfluous for parts of the pipeline which are up-to-date
 # Misleading for parts of the pipeline which require
 # updating: tasks might have to run based on dependencies
 # anyway
 #
 # else:
 # if task_is_out_of_date:
 # messages.append(indent_str + "Task appears up-to-date but
 # will rerun after its dependencies")
 # else:
 # messages.append(indent_str + "Task up-to-date")

 else:
 runtime_data["MATCH_FAILURE"] = defaultdict(set)
 #
 # return messages description per job if verbose > 5 else
 # whether up to date or not
 #
 cnt_jobs = 0
 for params, unglobbed_params in self.param_generator_func(runtime_data):
 cnt_jobs += 1

 #
 # needs update func = None: always needs update
 #
 if self.needs_update_func is None:
 if verbose >= 5:
 messages.extend(_get_job_names(
 unglobbed_params, indent_str))
 messages.append(indent_str + " Jobs needs update: No "
 "function to check if up-to-date or not")
 continue

 if self.needs_update_func == needs_update_check_modify_time:
 needs_update, msg = self.needs_update_func(
 *params, task=self, job_history=job_history,
 verbose_abbreviated_path=verbose_abbreviated_path,
 return_file_dates_when_uptodate=verbose > 6)
 else:
 needs_update, msg = self.needs_update_func(*params)

 if needs_update:
 messages.extend(_get_job_names(
 unglobbed_params, indent_str))
 if verbose >= 4:
 per_job_messages = [(indent_str + s)
 for s in (" Job needs update: %s" % msg).split("\n")]
 messages.extend(per_job_messages)
 else:
 messages.append(indent_str + " Job needs update")

 # up to date: log anyway if verbose
 else:
 # LOGGER
 if (task_is_out_of_date and verbose >= 5) or verbose >= 6:
 messages.extend(_get_job_names(
 unglobbed_params, indent_str))
 #
 # Get rid of up-to-date messages:
 # Superfluous for parts of the pipeline which are up-to-date
 # Misleading for parts of the pipeline which require updating:
 # tasks might have to run based on dependencies anyway
 #
 # if not task_is_out_of_date:
 # messages.append(indent_str + " Job up-to-date")
 if verbose > 6:
 messages.extend((indent_str + s)
 for s in (msg).split("\n"))

 if cnt_jobs == 0:
 messages.append(indent_str + "!!! No jobs for this task.")
 messages.append(indent_str + "Are you sure there is "
 "not a error in your code / regular expression?")
 # LOGGER

 # DEBUGGGG!!
 if verbose >= 4 or (verbose and cnt_jobs == 0):
 if runtime_data and "MATCH_FAILURE" in runtime_data and\
 self.param_generator_func in runtime_data["MATCH_FAILURE"]:
 for job_msg in runtime_data["MATCH_FAILURE"][self.param_generator_func]:
 messages.append(
 indent_str + "Job Warning: Input substitution failed:")
 messages.append(
 indent_str + " Do your regular expressions match the corresponding Input?")
 messages.extend(" " + indent_str +
 line for line in job_msg.split("\n"))

 runtime_data["MATCH_FAILURE"][self.param_generator_func] = set()
 messages.append("")
 return messages

 # ___

 # _is_up_to_date
 #
 # use to be named signal
 # returns whether up to date
 # stops recursing if true
 #
 # ___
 def _is_up_to_date(self, verbose_logger_job_history):
 """
 If true, depth first search will not pass through this node
 """
 if not verbose_logger_job_history:
 raise Exception("verbose_logger_job_history is None")

 verbose_logger = verbose_logger_job_history[0]
 job_history = verbose_logger_job_history[1]

 try:
 logger = verbose_logger.logger
 verbose = verbose_logger.verbose
 runtime_data = verbose_logger.runtime_data
 verbose_abbreviated_path = verbose_logger.verbose_abbreviated_path

 log_at_level(logger, 10, verbose, " Task = %r " %
 self._get_display_name())

 #
 # If job is inactive, always consider it up-to-date
 #
 if (self.active_if_checks is not None and
 any(not arg() if isinstance(arg, Callable) else not arg
 for arg in self.active_if_checks)):
 log_at_level(logger, 10, verbose,
 " Inactive task: treat as Up to date")
 # print 'signaling that the inactive task is up to date'
 return True

 #
 # Always needs update if no way to check if up to date
 #
 if self.needs_update_func is None:
 log_at_level(logger, 10, verbose,
 " No update function: treat as out of date")
 return False

 #
 # if no parameters, just return the results of needs update
 #
 if self.param_generator_func is None:
 if self.needs_update_func == needs_update_check_modify_time:
 needs_update, ignore_msg = self.needs_update_func(
 task=self, job_history=job_history,
 verbose_abbreviated_path=verbose_abbreviated_path)
 else:
 needs_update, ignore_msg = self.needs_update_func()
 log_at_level(logger, 10, verbose,
 " Needs update = %s" % needs_update)
 return not needs_update
 else:
 #
 # return not up to date if ANY jobs needs update
 #
 for params, unglobbed_params in self.param_generator_func(runtime_data):
 if self.needs_update_func == needs_update_check_modify_time:
 needs_update, ignore_msg = self.needs_update_func(
 *params, task=self, job_history=job_history,
 verbose_abbreviated_path=verbose_abbreviated_path)
 else:
 needs_update, ignore_msg = self.needs_update_func(
 *params)
 if needs_update:
 log_at_level(logger, 10, verbose, " Needing update:\n %s"
 % self._get_job_name(unglobbed_params,
 verbose_abbreviated_path, runtime_data))
 return False

 #
 # Percolate warnings from parameter factories
 #
 # !!
 if (verbose >= 1 and "ruffus_WARNING" in runtime_data and
 self.param_generator_func in runtime_data["ruffus_WARNING"]):
 for msg in runtime_data["ruffus_WARNING"][self.param_generator_func]:
 logger.warning(" 'In Task\n%s\n%s" % (
 self.description_with_args_placeholder % "...", msg))

 log_at_level(logger, 10, verbose, " All jobs up to date")

 return True

 #
 # removed for compatibility with python 3.x
 #
 # rethrow exception after adding task name
 # except error_task, inst:
 # inst.specify_task(self, "Exceptions in dependency checking")
 # raise

 except:
 exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
 #
 # rethrow exception after adding task name
 #
 if exceptionType == ruffus_exceptions.error_task:
 exceptionValue.specify
 inst.specify_task(self, "Exceptions in dependency checking")
 raise

 exception_stack = traceback.format_exc()
 exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
 exception_value = str(exceptionValue)
 if len(exception_value):
 exception_value = "(%s)" % exception_value
 errt = ruffus_exceptions.RethrownJobError([(self._name,
 "",
 exception_name,
 exception_value,
 exception_stack)])
 errt.specify_task(self, "Exceptions generating parameters")
 raise errt

 # ___

 # _get_output_files
 #
 #
 # ___
 def _get_output_files(self, do_not_expand_single_job_tasks, runtime_data):
 """
 Cache output files

 Normally returns a list with one item for each job or a just a list
 of file names.
 For "_single_job_single_output"
 i.e. @merge and @files with single jobs,
 returns the output of a single job (i.e. can be a string)
 """

 #
 # N.B. active_if_checks is called once per task
 # in make_job_parameter_generator() for consistency
 #
 # self.is_active can be set using self.active_if_checks in that
 # function, and therefore can be changed BETWEEN invocations
 # of pipeline_run
 #
 # self.is_active is not used anywhere else
 #
 if (not self.is_active):
 return []

 if self.output_filenames is None:

 self.output_filenames = []

 # skip tasks which don't have parameters
 if self.param_generator_func is not None:

 cnt_jobs = 0
 for params, unglobbed_params in self.param_generator_func(runtime_data):
 cnt_jobs += 1
 # skip tasks which don't have output parameters
 if len(params) >= 2:
 # make sure each @split or @subdivide or @originate
 # returns a list of jobs
 # i.e. each @split or @subdivide or @originate is
 # always a ->many operation
 # even if len(many) can be 1 (or zero)
 if self.indeterminate_output and not non_str_sequence(params[1]):
 self.output_filenames.append([params[1]])
 else:
 self.output_filenames.append(params[1])

 if self._is_single_job_single_output == self._single_job_single_output:
 if cnt_jobs > 1:
 raise ruffus_exceptions.error_task_get_output(self, "Task which is supposed to produce a "
 "single output somehow has more than one job.")

 #
 # The output of @split should be treated as multiple jobs
 #
 # The output of @split is always a list of lists:
 # 1) There is a list of @split jobs
 # A) For advanced (regex) @split
 # this is a many -> many more operation
 # So len(list) == many (i.e. the number of jobs
 # B) For normal @split
 # this is a 1 -> many operation
 # So len(list) = 1
 #
 # 2) The output of each @split job is a list
 # The items in this list of lists are each a job in
 # subsequent tasks
 #
 #
 # So we need to concatenate these separate lists into a
 # single list of output
 #
 # For example:
 # @split(["a.1", "b.1"], regex(r"(.)\.1"), r"\1.*.2")
 # def example(input, output):
 # JOB 1
 # a.1 -> a.i.2
 # -> a.j.2
 #
 # JOB 2
 # b.1 -> b.i.2
 # -> b.j.2
 #
 # output_filenames = [[a.i.2, a.j.2], [b.i.2, b.j.2]]
 #
 # we want [a.i.2, a.j.2, b.i.2, b.j.2]
 #
 # This also works for simple @split
 #
 # @split("a.1", r"a.*.2")
 # def example(input, output):
 # only job
 # a.1 -> a.i.2
 # -> a.j.2
 #
 # output_filenames = [[a.i.2, a.j.2]]
 #
 # we want [a.i.2, a.j.2]
 #
 if len(self.output_filenames) and self.indeterminate_output:
 self.output_filenames = reduce(
 lambda x, y: x + y, self.output_filenames)

 # special handling for jobs which have a single task
 if (do_not_expand_single_job_tasks and
 self._is_single_job_single_output and
 len(self.output_filenames)):
 return self.output_filenames[0]

 #
 # sort by jobs so it is just a weeny little bit less deterministic
 #
 return sorted(self.output_filenames, key=lambda x: str(x))

 # ___

 # _completed
 #
 # All logging logic moved to caller site
 # ___
 def _completed(self):
 """
 called even when all jobs are up to date
 """
 if not self.is_active:
 self.output_filenames = None
 return

 for f in self.posttask_functions:
 f()

 #
 # indeterminate output. Check actual output again if someother tasks
 # job function depend on it
 # used for @split
 #
 if self.indeterminate_output:
 self.output_filenames = None

 # ___

 # _handle_tasks_globs_in_inputs

 # ___
 def _handle_tasks_globs_in_inputs(self, input_params, modify_inputs_mode):
 """
 Helper function for tasks which
 1) Notes globs and tasks
 2) Replaces tasks names and functions with actual tasks
 3) Adds task dependencies automatically via task_follows

 modify_inputs_mode = results["modify_inputs_mode"] =
 t_extra_inputs.ADD_TO_INPUTS | REPLACE_INPUTS |
 KEEP_INPUTS | KEEP_OUTPUTS
 """
 # DEBUGGG
 # print(" task._handle_tasks_globs_in_inputs start %s" % (self._get_display_name(),), file = sys.stderr)
 #
 # get list of function/function names and globs
 #
 function_or_func_names, globs, runtime_data_names = get_nested_tasks_or_globs(input_params)

 #
 # replace function / function names with tasks
 #
 if modify_inputs_mode == t_extra_inputs.ADD_TO_INPUTS:
 description_with_args_placeholder = \
 self.description_with_args_placeholder % "add_inputs = add_inputs(%r)"
 elif modify_inputs_mode == t_extra_inputs.REPLACE_INPUTS:
 description_with_args_placeholder = \
 self.description_with_args_placeholder % "replace_inputs = add_inputs(%r)"
 elif modify_inputs_mode == t_extra_inputs.KEEP_OUTPUTS:
 description_with_args_placeholder = \
 self.description_with_args_placeholder % "output =%r"
 else: # t_extra_inputs.KEEP_INPUTS
 description_with_args_placeholder = \
 self.description_with_args_placeholder % "input =%r"

 tasks = self._connect_parents(
 description_with_args_placeholder, True, function_or_func_names)
 functions_to_tasks = dict()
 for funct_name_task_or_pipeline, task in zip(function_or_func_names, tasks):
 if isinstance(funct_name_task_or_pipeline, Pipeline):
 functions_to_tasks["PIPELINE=%s=PIPELINE" %
 funct_name_task_or_pipeline.name] = task
 else:
 functions_to_tasks[funct_name_task_or_pipeline] = task

 # replace strings, tasks, pipelines with tasks
 input_params = replace_placeholders_with_tasks_in_input_params(
 input_params, functions_to_tasks)
 # DEBUGGG
 #print(" task._handle_tasks_globs_in_inputs finish %s" % (self._get_display_name(),), file = sys.stderr)
 return t_params_tasks_globs_run_time_data(input_params, tasks, globs, runtime_data_names)

 def _choose_file_names_transform(self, parsed_args,
 valid_tags=(regex, suffix, formatter)):
 """
 shared code for subdivide, transform, product etc for choosing method
 for transform input file to output files
 """
 file_name_transform_tag = parsed_args["filter"]
 valid_tag_names = []
 # regular expression match
 if (regex in valid_tags):
 valid_tag_names.append("regex()")
 if isinstance(file_name_transform_tag, regex):
 return t_regex_file_names_transform(self,
 file_name_transform_tag,
 self.error_type,
 self.syntax)

 # simulate end of string (suffix) match
 if (suffix in valid_tags):
 valid_tag_names.append("suffix()")
 if isinstance(file_name_transform_tag, suffix):
 output_dir = parsed_args["output_dir"] if "output_dir" in parsed_args else [
]
 return t_suffix_file_names_transform(self,
 file_name_transform_tag,
 self.error_type,
 self.syntax,
 output_dir)
 # new style string.format()
 if (formatter in valid_tags):
 valid_tag_names.append("formatter()")
 if isinstance(file_name_transform_tag, formatter):
 return t_formatter_file_names_transform(self,
 file_name_transform_tag,
 self.error_type,
 self.syntax)

 raise self.error_type(self,
 "%s expects one of %s as the second argument"
 % (self.syntax, ", ".join(valid_tag_names)))

 # task handlers
 # sets
 # 1) action_type
 # 2) param_generator_func
 # 3) needs_update_func
 # 4) job wrapper
 def _do_nothing_setup(self):
 """
 Task is already set up: do nothing
 """
 return set()

 # originate does have an Input param.
 # It is just None (and not set-able)
 def _decorator_originate(self, *unnamed_args, **named_args):
 """
 @originate
 """
 self.syntax = "@originate"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_originate(unnamed_args, named_args)

 # originate
 # self.has_input_param = True

 def _prepare_originate(self, unnamed_args, named_args):
 """
 Common function for pipeline.originate and @originate
 """
 self.error_type = ruffus_exceptions.error_task_originate
 self._set_action_type(Task._action_task_originate)
 self._setup_task_func = Task._originate_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_output_files
 self.job_descriptor = io_files_one_to_many_job_descriptor
 self.single_multi_io = self._many_to_many
 # output is not a glob
 self.indeterminate_output = 0

 self.parsed_args = parse_task_arguments(unnamed_args, named_args, ["output", "extras"],
 self.description_with_args_placeholder)

 def _originate_setup(self):
 """
 Finish setting up originate
 """
 #
 # If self.parsed_args["output"] is a single item (e.g. file name),
 # that will be treated as a list
 # Each item in the list of these will be called as an output in a
 # separate function call
 #
 output_params = self.parsed_args["output"]
 if not non_str_sequence(output_params):
 output_params = [output_params]

 #
 # output globs will be replaced with files. But there should not be
 # tasks here!
 #
 list_output_files_task_globs = [self._handle_tasks_globs_in_inputs(
 oo, t_extra_inputs.KEEP_INPUTS) for oo in output_params]
 for oftg in list_output_files_task_globs:
 if len(oftg.tasks):
 raise self.error_type(self, "%s cannot output to another "
 "task. Do not include tasks in "
 "output parameters." % self.syntax)

 self.param_generator_func = originate_param_factory(list_output_files_task_globs,
 *self.parsed_args["extras"])
 return set()

 def _decorator_transform(self, *unnamed_args, **named_args):
 """
 @originate
 """
 self.syntax = "@transform"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (
 self.syntax, self._get_decorated_function())
 self._prepare_transform(unnamed_args, named_args)

 def _prepare_transform(self, unnamed_args, named_args):
 """
 Common function for pipeline.transform and @transform
 """
 self.error_type = ruffus_exceptions.error_task_transform
 self._set_action_type(Task._action_task_transform)
 self._setup_task_func = Task._transform_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_many

 # Parse named and unnamed arguments
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "modify_inputs",
 "output", "extras", "output_dir"],
 self.description_with_args_placeholder)

 def _transform_setup(self):
 """
 Finish setting up transform
 """
 # DEBUGGG
 # print(" task._transform_setup start %s" % (self._get_display_name(),), file = sys.stderr)
 # replace function / function names with tasks
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)
 ancestral_tasks = set(input_files_task_globs.tasks)

 # _single_job_single_output is bad policy. Can we remove it?
 # What does this actually mean in Ruffus semantics?
 #
 # allows transform to take a single file or task
 if input_files_task_globs.single_file_to_list():
 self._is_single_job_single_output = self._single_job_single_output

 #
 # whether transform generates a list of jobs or not will depend on
 # the parent task
 #
 elif isinstance(input_files_task_globs.params, Task):
 self._is_single_job_single_output = input_files_task_globs.params

 # how to transform input to output file name
 file_names_transform = self._choose_file_names_transform(
 self.parsed_args)

 modify_inputs = self.parsed_args["modify_inputs"]
 if modify_inputs is not None:
 modify_inputs = self._handle_tasks_globs_in_inputs(
 modify_inputs, self.parsed_args["modify_inputs_mode"])
 ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

 self.param_generator_func = transform_param_factory(input_files_task_globs,
 file_names_transform,
 modify_inputs,
 self.parsed_args["modify_inputs_mode"],
 self.parsed_args["output"],
 *self.parsed_args["extras"])

 # DEBUGGG
 #print(" task._transform_setup finish %s" % (self._get_display_name(),), file = sys.stderr)
 return ancestral_tasks

 def _decorator_subdivide(self, *unnamed_args, **named_args):
 """
 @subdivide
 """
 self.syntax = "@subdivide"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_subdivide(unnamed_args, named_args)

 def _prepare_subdivide(self, unnamed_args, named_args):
 """
 Common code for @subdivide and pipeline.subdivide
 @split can also end up here
 """
 self.error_type = ruffus_exceptions.error_task_subdivide
 self._set_action_type(Task._action_task_subdivide)
 self._setup_task_func = Task._subdivide_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_one_to_many_job_descriptor
 self.single_multi_io = self._many_to_many
 # output is a glob
 self.indeterminate_output = 2

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "modify_inputs",
 "output", "extras", "output_dir"],
 self.description_with_args_placeholder)

 def _subdivide_setup(self):
 """
 Finish setting up subdivide
 """

 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)

 # allows split to take a single file or task
 input_files_task_globs.single_file_to_list()

 ancestral_tasks = set(input_files_task_globs.tasks)

 # how to transform input to output file name
 file_names_transform = self._choose_file_names_transform(
 self.parsed_args)

 modify_inputs = self.parsed_args["modify_inputs"]
 if modify_inputs is not None:
 modify_inputs = self._handle_tasks_globs_in_inputs(
 modify_inputs, self.parsed_args["modify_inputs_mode"])
 ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

 #
 # output globs will be replaced with files.
 # But there should not be tasks here!
 #
 output_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["output"],
 t_extra_inputs.KEEP_OUTPUTS)
 if len(output_files_task_globs.tasks):
 raise self.error_type(self, ("%s cannot output to another task. Do not include tasks "
 "in output parameters.") % self.syntax)

 self.param_generator_func = subdivide_param_factory(input_files_task_globs,
 # False, #
 # flatten input
 # removed
 file_names_transform,
 modify_inputs,
 self.parsed_args["modify_inputs_mode"],
 output_files_task_globs,
 *self.parsed_args["extras"])
 return ancestral_tasks

 def _decorator_split(self, *unnamed_args, **named_args):
 """
 @split
 """
 self.syntax = "@split"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())

 #
 # This is actually @subdivide
 #
 if isinstance(unnamed_args[1], regex):
 self._prepare_subdivide(unnamed_args, named_args,
 self.description_with_args_placeholder)

 #
 # This is actually @split
 #
 else:
 self._prepare_split(unnamed_args, named_args)

 def _prepare_split(self, unnamed_args, named_args):
 """
 Common code for @split and pipeline.split
 """
 self.error_type = ruffus_exceptions.error_task_split
 self._set_action_type(Task._action_task_split)
 self._setup_task_func = Task._split_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_one_to_many_job_descriptor
 self.single_multi_io = self._one_to_many
 # output is a glob
 self.indeterminate_output = 1

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "output", "extras"],
 self.description_with_args_placeholder)

 def _split_setup(self):
 """
 Finish setting up split
 """

 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)

 #
 # output globs will be replaced with files.
 # But there should not be tasks here!
 #
 output_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["output"],
 t_extra_inputs.KEEP_OUTPUTS)
 if len(output_files_task_globs.tasks):
 raise self.error_type(self, "%s cannot output to another task. "
 "Do not include tasks in output "
 "parameters." % self.syntax)

 self.param_generator_func = split_param_factory(input_files_task_globs,
 output_files_task_globs,
 *self.parsed_args["extras"])
 return set(input_files_task_globs.tasks)

 def _decorator_merge(self, *unnamed_args, **named_args):
 """
 @merge
 """
 self.syntax = "@merge"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_merge(unnamed_args, named_args)

 def _prepare_merge(self, unnamed_args, named_args):
 """
 Common code for @merge and pipeline.merge
 """
 self.error_type = ruffus_exceptions.error_task_merge
 self._set_action_type(Task._action_task_merge)
 self._setup_task_func = Task._merge_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_one
 self._is_single_job_single_output = self._single_job_single_output

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "output", "extras"],
 self.description_with_args_placeholder)

 def _merge_setup(self):
 """
 Finish setting up merge
 """
 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)

 self.param_generator_func = merge_param_factory(input_files_task_globs,
 self.parsed_args["output"],
 *self.parsed_args["extras"])
 return set(input_files_task_globs.tasks)

 def _decorator_collate(self, *unnamed_args, **named_args):
 """
 @collate
 """
 self.syntax = "@collate"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_collate(unnamed_args, named_args)

 def _prepare_collate(self, unnamed_args, named_args):
 """
 Common code for @collate and pipeline.collate
 """
 self.error_type = ruffus_exceptions.error_task_collate
 self._set_action_type(Task._action_task_collate)
 self._setup_task_func = Task._collate_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_many

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "modify_inputs",
 "output", "extras"],
 self.description_with_args_placeholder)

 def _collate_setup(self):
 """
 Finish setting up collate
 """

 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)
 ancestral_tasks = set(input_files_task_globs.tasks)

 # how to transform input to output file name
 file_names_transform = self._choose_file_names_transform(self.parsed_args,
 (regex, formatter))

 modify_inputs = self.parsed_args["modify_inputs"]
 if modify_inputs is not None:
 modify_inputs = self._handle_tasks_globs_in_inputs(
 modify_inputs, self.parsed_args["modify_inputs_mode"])
 ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

 self.param_generator_func = collate_param_factory(input_files_task_globs,
 # False, #
 # flatten input
 # removed
 file_names_transform,
 modify_inputs,
 self.parsed_args["modify_inputs_mode"],
 self.parsed_args["output"],
 *self.parsed_args["extras"])

 return ancestral_tasks

 def _decorator_mkdir(self, *unnamed_args, **named_args):
 """
 @mkdir
 """
 syntax = "@mkdir"
 description_with_args_placeholder = "%s(%%s)\n%s" % (
 self.syntax, (self.description_with_args_placeholder % "..."))
 self._prepare_preceding_mkdir(unnamed_args, named_args, syntax,
 description_with_args_placeholder)

 def mkdir(self, *unnamed_args, **named_args):
 """
 Make missing directories, including intermediates, before this task
 """
 syntax = "Task(name = %s).mkdir" % self._name
 description_with_args_placeholder = "%s(%%s)" % (self.syntax)
 self._prepare_preceding_mkdir(unnamed_args, named_args, syntax,
 description_with_args_placeholder)
 return self

 def _prepare_preceding_mkdir(self, unnamed_args, named_args, syntax,
 task_description, defer=True):
 """
 Add mkdir Task to run before self
 Common to
 Task.mkdir
 @mkdir
 @follows(..., mkdir())
 """
 #
 # Create a new Task with a unique name to this instance of mkdir
 #
 self.cnt_task_mkdir += 1
 cnt_task_mkdir_str = (
 " #%d" % self.cnt_task_mkdir) if self.cnt_task_mkdir > 1 else ""
 task_name = r"mkdir%r%s before %s " % (
 unnamed_args, cnt_task_mkdir_str, self._name)
 task_name = task_name.replace(",)", ")").replace(",", ", ")
 new_task = self.pipeline._create_task(
 task_func=job_wrapper_mkdir, task_name=task_name)

 # defer _add_parent so we can clone unless we are already
 # calling add_parent (from _connect_parents())
 if defer:
 self.deferred_follow_params.append(
 [task_description, False, [new_task]])

 #
 # Prepare new node
 #
 new_task.syntax = syntax
 new_task._prepare_mkdir(unnamed_args, named_args, task_description)

 #
 # Hack:
 # If the task name is too ugly,
 # we can override it for flowchart printing using the
 # display_name
 #
 # new_node.display_name = ??? new_node.func_description
 return new_task

 def _prepare_mkdir(self, unnamed_args, named_args, task_description):

 self.error_type = ruffus_exceptions.error_task_mkdir
 self._set_action_type(Task._action_mkdir)
 self.needs_update_func = self.needs_update_func or needs_update_check_directory_missing
 self.job_wrapper = job_wrapper_mkdir
 self.job_descriptor = mkdir_job_descriptor

 # doesn't have a real function
 # use job_wrapper just so it is not None
 self.user_defined_work_func = self.job_wrapper

 #
 # @transform like behaviour with regex / suffix or formatter
 #
 if (len(unnamed_args) > 1 and
 isinstance(unnamed_args[1], (formatter, suffix, regex))) or "filter" in named_args:
 self.single_multi_io = self._many_to_many
 self._setup_task_func = Task._transform_setup

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "modify_inputs",
 "output", "output_dir", "extras"], task_description)

 #
 # simple behaviour: just make directories in list of strings
 #
 # the mkdir decorator accepts one string, multiple strings or a list of strings
 else:

 #
 # override funct description normally parsed from func.__doc__
 # "Make missing directories including any intermediate
 # directories on the specified path(s)"
 #
 self.func_description = "Make missing directories %s" % (
 shorten_filenames_encoder(unnamed_args, 0))

 self.single_multi_io = self._one_to_one
 self._setup_task_func = Task._do_nothing_setup
 self.has_input_param = False

 #
 #
 #
 # if a single argument collection of parameters, keep that as is
 if len(unnamed_args) == 0:
 self.parsed_args["output"] = []
 elif len(unnamed_args) > 1:
 self.parsed_args["output"] = unnamed_args
 # len(unnamed_args) == 1: unpack unnamed_args[0]
 elif non_str_sequence(unnamed_args[0]):
 self.parsed_args["output"] = unnamed_args[0]
 # single string or other non collection types
 else:
 self.parsed_args["output"] = unnamed_args

 # all directories created in one job to reduce race conditions
 # so we are converting [a,b,c] into [[(a, b,c)]]
 # where unnamed_args = (a,b,c)
 # i.e. one job whose solitory argument is a tuple/list of directory
 # names
 self.param_generator_func = args_param_factory(
 [[sorted(self.parsed_args["output"], key=lambda x: str(x))]])

 # print ("mkdir %s" % (self.func_description), file = sys.stderr)

 def _decorator_product(self, *unnamed_args, **named_args):
 """
 @product
 """
 self.syntax = "@product"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_product(unnamed_args, named_args)

 def _prepare_product(self, unnamed_args, named_args):
 """
 Common code for @product and pipeline.product
 """
 self.error_type = ruffus_exceptions.error_task_product
 self._set_action_type(Task._action_task_product)
 self._setup_task_func = Task._product_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_many

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "inputN", "modify_inputs",
 "output", "extras"],
 self.description_with_args_placeholder)

 def _product_setup(self):
 """
 Finish setting up product
 """
 #
 # replace function / function names with tasks
 #
 list_input_files_task_globs = [self._handle_tasks_globs_in_inputs(ii,
 t_extra_inputs.KEEP_INPUTS)
 for ii in self.parsed_args["input"]]
 ancestral_tasks = set()
 for input_files_task_globs in list_input_files_task_globs:
 ancestral_tasks = ancestral_tasks.union(
 input_files_task_globs.tasks)

 # how to transform input to output file name
 file_names_transform = t_nested_formatter_file_names_transform(self,
 self.parsed_args["filter"],
 self.error_type,
 self.syntax)

 modify_inputs = self.parsed_args["modify_inputs"]
 if modify_inputs is not None:
 modify_inputs = self._handle_tasks_globs_in_inputs(
 modify_inputs, self.parsed_args["modify_inputs_mode"])
 ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

 self.param_generator_func = product_param_factory(list_input_files_task_globs,
 # False, #
 # flatten input
 # removed
 file_names_transform,
 modify_inputs,
 self.parsed_args["modify_inputs_mode"],
 self.parsed_args["output"],
 *self.parsed_args["extras"])

 return ancestral_tasks

 def _decorator_permutations(self, *unnamed_args, **named_args):
 """
 @permutations
 """
 self.syntax = "@permutations"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_combinatorics(
 unnamed_args, named_args, ruffus_exceptions.error_task_permutations)

 def _decorator_combinations(self, *unnamed_args, **named_args):
 """
 @combinations
 """
 self.syntax = "@combinations"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_combinatorics(
 unnamed_args, named_args, ruffus_exceptions.error_task_combinations)

 def _decorator_combinations_with_replacement(self, *unnamed_args,
 **named_args):
 """
 @combinations_with_replacement
 """
 self.syntax = "@combinations_with_replacement"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_combinatorics(unnamed_args, named_args,
 ruffus_exceptions.error_task_combinations_with_replacement)

 def _prepare_combinatorics(self, unnamed_args, named_args, error_type):
 """
 Common code for
 @permutations and pipeline.permutations
 @combinations and pipeline.combinations
 @combinations_with_replacement and
 pipeline.combinations_with_replacement
 """
 self.error_type = error_type
 self._setup_task_func = Task._combinatorics_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_many

 #
 # Parse named and unnamed arguments
 #
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "tuple_size",
 "modify_inputs", "output", "extras"],
 self.description_with_args_placeholder)

 def _combinatorics_setup(self):
 """
 Finish setting up combinatorics
 """
 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)
 ancestral_tasks = set(input_files_task_globs.tasks)

 # how to transform input to output file name: len(k-tuples) of
 # (identical) formatters
 file_names_transform = t_nested_formatter_file_names_transform(
 self, [self.parsed_args["filter"]] *
 self.parsed_args["tuple_size"],
 self.error_type, self.syntax)

 modify_inputs = self.parsed_args["modify_inputs"]
 if modify_inputs is not None:
 modify_inputs = self._handle_tasks_globs_in_inputs(
 modify_inputs, self.parsed_args["modify_inputs_mode"])
 ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

 # we are not going to specify what type of combinatorics this is twice:
 # just look up from our error type
 error_type_to_combinatorics_type = {
 ruffus_exceptions.error_task_combinations_with_replacement:
 t_combinatorics_type.COMBINATORICS_COMBINATIONS_WITH_REPLACEMENT,
 ruffus_exceptions.error_task_combinations:
 t_combinatorics_type.COMBINATORICS_COMBINATIONS,
 ruffus_exceptions.error_task_permutations:
 t_combinatorics_type.COMBINATORICS_PERMUTATIONS
 }

 self.param_generator_func = \
 combinatorics_param_factory(input_files_task_globs,
 # False, #
 # flatten
 # input
 # removed
 error_type_to_combinatorics_type[
 self.error_type],
 self.parsed_args["tuple_size"],
 file_names_transform,
 modify_inputs,
 self.parsed_args["modify_inputs_mode"],
 self.parsed_args["output"],
 *self.parsed_args["extras"])

 return ancestral_tasks

 def _decorator_files(self, *unnamed_args, **named_args):
 """
 @files
 """
 self.syntax = "@files"
 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self._prepare_files(unnamed_args, named_args)

 def _prepare_files(self, unnamed_args, named_args):
 """
 Common code for @files and pipeline.files
 """
 self.error_type = ruffus_exceptions.error_task_files
 self._setup_task_func = Task._do_nothing_setup
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor

 if len(unnamed_args) == 0:
 raise ruffus_exceptions.error_task_files(self, "Too few arguments for @files")

 # Use parameters generated by a custom function
 if len(unnamed_args) == 1 and isinstance(unnamed_args[0],
 Callable):

 self._set_action_type(Task._action_task_files_func)
 self.param_generator_func = files_custom_generator_param_factory(
 unnamed_args[0])

 # assume
 self.single_multi_io = self._many_to_many

 # Use parameters in supplied list
 else:
 self._set_action_type(Task._action_task_files)

 if len(unnamed_args) > 1:

 # single jobs
 # This is true even if the previous task has multiple output
 # These will all be joined together at the hip (like @merge)
 # If you want different behavior, use @transform
 params = copy.copy([unnamed_args])
 self._is_single_job_single_output = self._single_job_single_output
 self.single_multi_io = self._one_to_one

 else:

 # multiple jobs with input/output parameters etc.
 params = copy.copy(unnamed_args[0])
 self._is_single_job_single_output = self._multiple_jobs_outputs
 self.single_multi_io = self._many_to_many

 check_files_io_parameters(self, params, ruffus_exceptions.error_task_files)

 self.parsed_args["input"] = [pp[0] for pp in params]
 self.parsed_args["output"] = [tuple(pp[1:]) for pp in params]
 self._setup_task_func = Task._files_setup

 def _files_setup(self):
 """
 Finish setting up @files
 """
 #
 # replace function / function names with tasks
 #
 input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
 t_extra_inputs.KEEP_INPUTS)

 self.param_generator_func = files_param_factory(input_files_task_globs,
 True,
 self.parsed_args["output"])
 return set(input_files_task_globs.tasks)

 def _decorator_parallel(self, *unnamed_args, **named_args):
 """
 @parallel
 """
 self.syntax = "@parallel"
 self._prepare_parallel(unnamed_args, named_args)

 def _prepare_parallel(self, unnamed_args, named_args):
 """
 Common code for @parallel and pipeline.parallel
 """
 self.error_type = ruffus_exceptions.error_task_parallel
 self._set_action_type(Task._action_task_parallel)
 self._setup_task_func = Task._do_nothing_setup
 # self.needs_update_func = None
 self.job_wrapper = job_wrapper_generic
 self.job_descriptor = io_files_job_descriptor

 if len(unnamed_args) == 0:
 raise ruffus_exceptions.error_task_parallel(self, "Too few arguments for @parallel")

 # Use parameters generated by a custom function
 if len(unnamed_args) == 1 and isinstance(unnamed_args[0],
 Callable):
 self.param_generator_func = args_param_factory(unnamed_args[0]())

 # list of params
 else:
 if len(unnamed_args) > 1:
 # single jobs
 params = copy.copy([unnamed_args])
 self._is_single_job_single_output = self._single_job_single_output
 else:
 # multiple jobs with input/output parameters etc.
 params = copy.copy(unnamed_args[0])
 check_parallel_parameters(self, params, ruffus_exceptions.error_task_parallel)

 self.param_generator_func = args_param_factory(params)

 def _decorator_files_re(self, *unnamed_args, **named_args):
 """
 @files_re

 calls user function in parallel
 with input_files, output_files, parameters
 These needed to be generated on the fly by
 getting all file names in the supplied list/glob pattern
 There are two variations:

 1) inputfiles = all files in glob which match the regular
 expression
 outputfile = generated from the replacement string

 2) inputfiles = all files in glob which match the regular
 expression and generated from the "from"
 replacement string
 outputfiles = all files in glob which match the regular
 expression and generated from the "to"
 replacement string
 """
 self.syntax = "@files_re"
 self.error_type = ruffus_exceptions.error_task_files_re
 self._set_action_type(Task._action_task_files_re)
 self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
 self.job_wrapper = job_wrapper_io_files
 self.job_descriptor = io_files_job_descriptor
 self.single_multi_io = self._many_to_many

 if len(unnamed_args) < 3:
 raise self.error_type(self, "Too few arguments for @files_re")

 # 888

 # !! HERE BE DRAGONS !!

 # Legacy, deprecated parameter handling depending on positions
 # and not even on type

 # check if parameters wrapped in combine
 combining_all_jobs, unnamed_args = is_file_re_combining(unnamed_args)

 # second parameter is always regex()
 unnamed_args[1] = regex(unnamed_args[1])

 # third parameter is inputs() if there is a four and fifth parameter...
 # That means if you want "extra" parameters, you always need inputs()
 if len(unnamed_args) > 3:
 unnamed_args[2] = inputs(unnamed_args[2])

 # 888

 self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
 self._get_decorated_function())
 self.parsed_args = parse_task_arguments(unnamed_args, named_args,
 ["input", "filter", "modify_inputs",
 "output", "extras"],
 self.description_with_args_placeholder)

 if combining_all_jobs:
 self._setup_task_func = Task._collate_setup
 else:
 self._setup_task_func = Task._transform_setup

 # 888

 # Task functions

 # follows
 # check_if_uptodate
 # posttask
 # jobs_limit
 # active_if
 # graphviz

 # 888
 def follows(self, *unnamed_args, **named_args):
 """
 Specifies a preceding task / action which this task will follow.
 The preceding task can be specified as a string or function or Task
 object.
 A task can also follow the making of one or more directories:

 task.follows(mkdir("my_dir"))

 """
 description_with_args_placeholder = (
 self.description_with_args_placeholder % "...") + ".follows(%r)"

 self.deferred_follow_params.append([description_with_args_placeholder, False,
 unnamed_args])
 # self._connect_parents(description_with_args_placeholder, False,
 # unnamed_args)
 return self

 def _decorator_follows(self, *unnamed_args, **named_args):
 """
 unnamed_args can be string or function or Task
 For strings, if lookup fails, will defer.
 """
 description_with_args_placeholder = "@follows(%r)\n" + (
 self.description_with_args_placeholder % "...")
 self.deferred_follow_params.append([description_with_args_placeholder, False,
 unnamed_args])
 # self._connect_parents(description_with_args_placeholder, False, unnamed_args)

 def _complete_setup(self):
 """
 Connect up parents if follows was specified and setups up task functions
 Returns a set of parent tasks

 Note will tear down previous parental links before doing anything
 """
 # DEBUGGG
 # print(" task._complete_setup start %s" % (self._get_display_name(),), file = sys.stderr)
 self._remove_all_parents()
 ancestral_tasks = self._deferred_connect_parents()
 ancestral_tasks |= self._setup_task_func(self)
 if "named_extras" in self.parsed_args:
 if self.command_str_callback == "PIPELINE":
 self.parsed_args["named_extras"]["__RUFFUS_TASK_CALLBACK__"] = self.pipeline.command_str_callback
 else:
 self.parsed_args["named_extras"]["__RUFFUS_TASK_CALLBACK__"] = self.command_str_callback
 # DEBUGGG
 # print(" task._complete_setup finish %s\n" % (self._get_display_name(),), file = sys.stderr)
 return ancestral_tasks

 def _deferred_connect_parents(self):
 """
 Called by _complete_task_setup() from pipeline_run, pipeline_printout etc.
 returns a non-redundant list of all the ancestral tasks
 """
 # DEBUGGG
 # print(" task._deferred_connect_parents start %s (%d to do)" % (self._get_display_name(),
 # len(self.deferred_follow_params)), file = sys.stderr)
 parent_tasks = set()

 for ii, deferred_follow_params in enumerate(self.deferred_follow_params):
 # DEBUGGG
 # print(" task._deferred_connect_parents %s %d out of %d " % (self._get_display_name(),
 # ii, len(self.deferred_follow_params)), file = sys.stderr)
 new_tasks = self._connect_parents(*deferred_follow_params)
 # convert to mkdir and dynamically created tasks from follows into the actual created tasks
 # otherwise each time we redo this, we will have a sorceror's apprentice situation!
 deferred_follow_params[2] = new_tasks
 parent_tasks.update(new_tasks)

 # DEBUGGG
 # print(" task._deferred_connect_parents finish %s" % self._get_display_name(), file = sys.stderr)
 return parent_tasks

 # Deferred tasks will need to be resolved later
 # Because deferred tasks can belong to other pipelines
 def _connect_parents(self, description_with_args_placeholder, no_mkdir,
 unnamed_args):
 """
 unnamed_args can be string or function or Task
 For strings, if lookup fails, will defer.

 Called from
 * task.follows
 * @follows
 * decorators, e.g. @transform _handle_tasks_globs_in_inputs
 (input dependencies)
 * pipeline.transform etc. _handle_tasks_globs_in_inputs
 (input dependencies)
 * @split / pipeline.split _handle_tasks_globs_in_inputs
 (output dependencies)
 """
 # DEBUGGG
 #print(" _connect_parents start %s" % self._get_display_name(), file = sys.stderr)
 new_tasks = []
 for arg in unnamed_args:
 #
 # Task
 #
 if isinstance(arg, Task):
 if arg == self:
 raise ruffus_exceptions.error_decorator_args(
 "Cannot have a task as its own (circular) dependency:\n"
 % description_with_args_placeholder % (arg,))

 #
 # re-lookup from task name to handle cloning
 #
 if arg.pipeline.name == self.pipeline.original_name and \
 self.pipeline.original_name != self.pipeline.name:
 tasks = lookup_tasks_from_name(arg._name,
 default_pipeline_name=self.pipeline.name,
 default_module_name=self.func_module_name)
 new_tasks.extend(tasks)

 if not tasks:
 raise ruffus_exceptions.error_node_not_task(
 "task '%s' '%s::%s' is somehow absent in the cloned pipeline (%s)!%s"
 % (self.pipeline.original_name, arg._name, self.pipeline.name,
 description_with_args_placeholder % (arg._name,)))
 else:
 new_tasks.append(arg)

 #
 # Pipeline: defer
 #
 elif isinstance(arg, Pipeline):
 if arg == self.pipeline:
 raise ruffus_exceptions.error_decorator_args(
 "Cannot have your own pipeline as a (circular) "
 "dependency of a Task:\n" +
 description_with_args_placeholder % (arg,))

 if not len(arg.get_tail_tasks()):
 raise ruffus_exceptions.error_no_tail_tasks(
 "Pipeline '{pipeline_name}' has no 'tail' tasks defined.\nWhich task "
 "in '{pipeline_name}' are you referring to?"
 .format(pipeline_name=arg.name))
 new_tasks.extend(arg.get_tail_tasks())

 # specified by string: unicode or otherwise
 elif isinstance(arg, path_str_type):
 # handle pipeline cloning
 task_name = arg.replace(self.pipeline.original_name + "::",
 self.pipeline.name + "::")

 tasks = lookup_tasks_from_name(arg,
 default_pipeline_name=self.pipeline.name,
 default_module_name=self.func_module_name)
 new_tasks.extend(tasks)

 if not tasks:
 raise ruffus_exceptions.error_node_not_task("task '%s' is not a pipelined task in Ruffus. "
 "Have you mis-spelt the function or task name?\n%s"
 % (arg, description_with_args_placeholder % (arg,)))

 # for mkdir, automatically generate task with unique name
 elif isinstance(arg, mkdir):
 if no_mkdir:
 raise ruffus_exceptions.error_decorator_args("Unexpected mkdir() found.\n" +
 description_with_args_placeholder % (arg,))

 # syntax for new task doing the mkdir
 if self.created_via_decorator:
 mkdir_task_syntax = "@follows(mkdir())"
 else:
 mkdir_task_syntax = "Task(name=%r).follows(mkdir())" % self._get_display_name(
)
 mkdir_description_with_args_placeholder = \
 description_with_args_placeholder % "mkdir(%s)"
 new_tasks.append(self._prepare_preceding_mkdir(arg.args, {}, mkdir_task_syntax,
 mkdir_description_with_args_placeholder, False))

 # Is this a function?
 # Turn this function into a task
 # (add task as attribute of this function)
 # Add self as dependent
 elif isinstance(arg, Callable):
 task = lookup_unique_task_from_func(
 arg, default_pipeline_name=self.pipeline.name)

 # add new task to pipeline if necessary
 if not task:
 task = main_pipeline._create_task(task_func=arg)
 new_tasks.append(task)

 else:
 raise ruffus_exceptions.error_decorator_args(
 "Expecting a function or function name or task name or "
 "Task or Pipeline.\n" +
 description_with_args_placeholder % (arg,))

 # add dependency
 # duplicate dependencies are ignore automatically
 #
 for task in new_tasks:
 self._add_parent(task)

 # DEBUGGG
 # print(" _connect_parents finish %s" % self._get_display_name(), file = sys.stderr)
 return new_tasks

 def check_if_uptodate(self, func):
 """
 Specifies how a task is to be checked if it needs to be rerun (i.e. is
 up-to-date).
 func returns true if input / output files are up to date
 func takes as many arguments as the task function
 """
 if not isinstance(func, Callable):
 description_with_args_placeholder = \
 (self.description_with_args_placeholder %
 "...") + ".check_if_uptodate(%r)"
 raise ruffus_exceptions.error_decorator_args(
 "Expected a single function or Callable object in \n" +
 description_with_args_placeholder % (func,))
 self.needs_update_func = func
 return self

 def _decorator_check_if_uptodate(self, *args):
 """
 @check_if_uptodate
 """
 if len(args) != 1 or not isinstance(args[0], Callable):
 description_with_args_placeholder = "@check_if_uptodate(%r)\n" + (
 self.description_with_args_placeholder % "...")
 raise ruffus_exceptions.error_decorator_args(
 "Expected a single function or Callable object in \n" +
 description_with_args_placeholder % (args,))
 self.needs_update_func = args[0]

 def posttask(self, *funcs):
 """
 Takes one or more functions which will be called if the task completes
 """
 description_with_args_placeholder = ("Expecting simple functions or touch_file() in \n" +
 (self.description_with_args_placeholder % "...") +
 ".posttask(%r)")
 self._set_posttask(description_with_args_placeholder, *funcs)
 return self

 def _decorator_posttask(self, *funcs):
 """
 @posttask
 """
 description_with_args_placeholder = ("Expecting simple functions or touch_file() in \n" +
 "@posttask(%r)\n" +
 (self.description_with_args_placeholder % "..."))
 self._set_posttask(description_with_args_placeholder, *funcs)

 def _set_posttask(self, description_with_args_placeholder, *funcs):
 """
 Takes one or more functions which will be called if the task completes
 """
 for arg in funcs:
 if isinstance(arg, touch_file):
 self.posttask_functions.append(
 touch_file_factory(arg.args, register_cleanup))
 elif isinstance(arg, Callable):
 self.posttask_functions.append(arg)
 else:
 raise ruffus_exceptions.PostTaskArgumentError(
 description_with_args_placeholder % (arg,))

 def jobs_limit(self, maximum_jobs_in_parallel, limit_name=None):
 """
 Limit the number of concurrent jobs
 """
 description_with_args_placeholder = ((self.description_with_args_placeholder % "...") +
 ".jobs_limit(%r%s)")
 self._set_jobs_limit(description_with_args_placeholder,
 maximum_jobs_in_parallel, limit_name)
 return self

 def _decorator_jobs_limit(self, maximum_jobs_in_parallel, limit_name=None):
 """
 @jobs_limit
 """
 description_with_args_placeholder = ("@jobs_limit(%r%s)\n" +
 (self.description_with_args_placeholder % "..."))
 self._set_jobs_limit(description_with_args_placeholder,
 maximum_jobs_in_parallel, limit_name)

 def _set_jobs_limit(self, description_with_args_placeholder,
 maximum_jobs_in_parallel, limit_name=None):
 try:
 maximum_jobs_in_parallel = int(maximum_jobs_in_parallel)
 assert(maximum_jobs_in_parallel >= 1)
 except:
 limit_name = ", " + limit_name if limit_name else ""
 raise ruffus_exceptions.JobsLimitArgumentError(
 "Expecting a positive integer > 1 in \n" +
 description_with_args_placeholder % (maximum_jobs_in_parallel, limit_name))

 # set semaphore name to other than the "pipeline.name:task name"
 if limit_name is not None:
 self.semaphore_name = limit_name
 if self.semaphore_name in self._job_limit_semaphores:
 prev_maximum_jobs = self._job_limit_semaphores[self.semaphore_name]
 if prev_maximum_jobs != maximum_jobs_in_parallel:
 limit_name = ", " + limit_name if limit_name else ""
 raise ruffus_exceptions.JobsLimitArgumentError(
 'The job limit %r cannot re-defined from the former '
 'limit of %d in \n'
 % (self.semaphore_name, prev_maximum_jobs) +
 description_with_args_placeholder
 % (maximum_jobs_in_parallel, limit_name))
 else:
 #
 # save semaphore and limit
 #
 self._job_limit_semaphores[
 self.semaphore_name] = maximum_jobs_in_parallel

 def active_if(self, *active_if_checks):
 """
 If any of active_checks is False or returns False, then the task is
 marked as "inactive" and its outputs removed.
 """
 # print 'job is active:', active_checks, [
 # arg() if isinstance(arg, Callable) else arg
 # for arg in active_checks]
 if self.active_if_checks is None:
 self.active_if_checks = []
 self.active_if_checks.extend(active_if_checks)
 # print(self.active_if_checks)
 return self

 def _decorator_active_if(self, *active_if_checks):
 """
 @active_if
 """
 self.active_if(*active_if_checks)

 def graphviz(self, *unnamed_args, **named_args):
 """
 Sets graphviz (e.g. `dot`) attributes used to draw this Task
 """
 self.graphviz_attributes = named_args
 if len(unnamed_args):
 raise TypeError("Only named arguments expected in :" +
 self.description_with_args_placeholder % "..." +
 ".graphviz(%r)\n" % unnamed_args)
 return self

 def _decorator_graphviz(self, *unnamed_args, **named_args):
 self.graphviz_attributes = named_args
 if len(unnamed_args):
 raise TypeError("Only named arguments expected in :" +
 "@graphviz(%r)\n" % unnamed_args +
 self.description_with_args_placeholder % "...")

class task_encoder(json.JSONEncoder):

 def default(self, obj):
 if isinstance(obj, set):
 return list(obj)
 if isinstance(obj, defaultdict):
 return dict(obj)
 if isinstance(obj, Task):
 # , Task._action_names[obj._action_task], obj.func_description]
 return obj._name
 return json.JSONEncoder.default(self, obj)

def is_node_up_to_date(node, extra_data):
 """
 Forwards tree depth first search "signalling" mechanism to
 node _is_up_to_date method
 Depth first search stops when node._is_up_to_date return True
 """
 return node._is_up_to_date(extra_data)

def update_checksum_level_on_tasks(checksum_level):
 """Reset the checksum level for all tasks"""
 for n in node._all_nodes:
 n.checksum_level = checksum_level

def update_active_states_for_all_tasks():
 """

 @active_if decorated tasks can change their active state every time
 pipeline_run / pipeline_printout / pipeline_printout_graph is called

 update_active_states_for_all_tasks ()

 """
 for n in node._all_nodes:
 n._update_active_state()

def lookup_pipeline(pipeline):
 """
 If pipeline is
 None : main_pipeline
 string : lookup name in pipelines
 """
 if pipeline is None:
 return main_pipeline

 # Pipeline object pass through unchanged
 if isinstance(pipeline, Pipeline):
 return pipeline

 # strings: lookup from name
 if isinstance(pipeline, str) and pipeline in Pipeline.pipelines:
 return Pipeline.pipelines[pipeline]

 raise ruffus_exceptions.error_not_a_pipeline("%s does not name a pipeline." % pipeline)

def _pipeline_prepare_to_run(checksum_level, history_file, pipeline, runtime_data, target_tasks, forcedtorun_tasks):
 """
 Common function to setup pipeline, check parameters
 before pipeline_run, pipeline_printout, pipeline_printout_graph
 """

 if checksum_level is None:
 checksum_level = get_default_checksum_level()

 update_checksum_level_on_tasks(checksum_level)

 #
 # If we aren't using checksums, and history file hasn't been specified,
 # we might be a bit surprised to find Ruffus writing to a
 # sqlite db anyway.
 # Let us just dump to a placeholder memory db that can then be discarded
 # Of course, if history_file is specified, we presume you know what
 # you are doing
 #
 if checksum_level == CHECKSUM_FILE_TIMESTAMPS and history_file is None:
 history_file = ':memory:'
 #
 # load previous job history if it exists, otherwise create an empty history
 #
 job_history = open_job_history(history_file)

 #
 # @active_if decorated tasks can change their active state every time
 # pipeline_run / pipeline_printout / pipeline_printout_graph is called
 #
 update_active_states_for_all_tasks()

 #
 # run time data
 #
 if runtime_data is None:
 runtime_data = {}
 if not isinstance(runtime_data, dict):
 raise Exception("Parameter runtime_data should be a "
 "dictionary of values passes to jobs at run time.")

 #
 # This is the default namespace for looking for tasks
 #
 # pipeline must be a Pipeline or a string naming a pipeline
 #
 # Keep pipeline
 #
 if pipeline is not None:
 pipeline = lookup_pipeline(pipeline)
 default_pipeline_name = pipeline.name
 else:
 default_pipeline_name = "main"

 #
 # Lookup target jobs
 #
 if target_tasks is None:
 target_tasks = []
 if forcedtorun_tasks is None:
 forcedtorun_tasks = []
 # lookup names, prioritise the specified pipeline or "main"
 target_tasks = lookup_tasks_from_user_specified_names(
 "Target", target_tasks, default_pipeline_name, "__main__", True)
 forcedtorun_tasks = lookup_tasks_from_user_specified_names("Forced to run", forcedtorun_tasks,
 default_pipeline_name, "__main__", True)

 #
 # Empty target, either run the specified tasks from the pipeline
 # or will run every single task under the sun
 #
 if not target_tasks:
 if pipeline:
 target_tasks.extend(list(pipeline.tasks))
 if not target_tasks:
 for pipeline_name in Pipeline.pipelines.keys():
 target_tasks.extend(
 list(Pipeline.pipelines[pipeline_name].tasks))

 # make sure pipeline is defined
 pipeline = lookup_pipeline(pipeline)

 # Unique task list
 target_tasks = list(set(target_tasks))

 #
 # Make sure all tasks in dependency list from (forcedtorun_tasks and target_tasks)
 # are setup and linked to real functions
 #
 processed_tasks = set()
 completed_pipeline_names = set()
 incomplete_pipeline_names = set()

 # get list of all involved pipelines
 for task in forcedtorun_tasks + target_tasks:
 if task.pipeline.name not in completed_pipeline_names:
 incomplete_pipeline_names.add(task.pipeline.name)

 # set up each pipeline.
 # These will in turn lookup up their antecedents (even in another pipeline) and
 # set them up as well.
 for pipeline_name in incomplete_pipeline_names:
 if pipeline_name in completed_pipeline_names:
 continue
 completed_pipeline_names = completed_pipeline_names.union(
 pipeline.pipelines[pipeline_name]._complete_task_setup(processed_tasks))

 return checksum_level, job_history, pipeline, runtime_data, target_tasks, forcedtorun_tasks

[docs]def pipeline_printout_graph(stream,
 output_format=None,
 target_tasks=[],
 forcedtorun_tasks=[],
 draw_vertically=True,
 ignore_upstream_of_target=False,
 skip_uptodate_tasks=False,
 gnu_make_maximal_rebuild_mode=True,
 test_all_task_for_update=True,
 no_key_legend=False,
 minimal_key_legend=True,
 user_colour_scheme=None,
 pipeline_name="Pipeline:",
 size=(11, 8),
 dpi=120,
 runtime_data=None,
 checksum_level=None,
 history_file=None,
 pipeline=None):
 # Remember to add further extra parameters here to
 # "extra_pipeline_printout_graph_options" inside cmdline.py
 # This will forward extra parameters from the
 # command line to pipeline_printout_graph
 """
 print out pipeline dependencies in various formats

 :param stream: where to print to
 :type stream: file-like object with ``write()`` function
 :param output_format: ["dot", "jpg", "svg", "ps", "png"]. All but the
 first depends on the
 `dot <http://www.graphviz.org>`_ program.
 :param target_tasks: targets task functions which will be run if they are
 out-of-date.
 :param forcedtorun_tasks: task functions which will be run whether or not
 they are out-of-date.
 :param draw_vertically: Top to bottom instead of left to right.
 :param ignore_upstream_of_target: Don't draw upstream tasks of targets.
 :param skip_uptodate_tasks: Don't draw up-to-date tasks if possible.
 :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
 out-of-date tasks. Runs minimal
 set to build targets if set to
 ``True``. Use with caution.
 :param test_all_task_for_update: Ask all task functions if they are
 up-to-date.
 :param no_key_legend: Don't draw key/legend for graph.
 :param minimal_key_legend: Only legend entries for used task types
 :param user_colour_scheme: Dictionary specifying flowchart colour scheme
 :param pipeline_name: Pipeline Title
 :param size: tuple of x and y dimensions
 :param dpi: print resolution
 :param runtime_data: Experimental feature: pass data to tasks at run time
 :param history_file: Database file storing checksums and file timestamps
 for input/output files.
 :param checksum_level: Several options for checking up-to-dateness are
 available: Default is level 1.
 level 0 : Use only file timestamps
 level 1 : above, plus timestamp of successful job completion
 level 2 : above, plus a checksum of the pipeline function body
 level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators
 """

 # EXTRA pipeline_run DEBUGGING
 global EXTRA_PIPELINERUN_DEBUGGING
 EXTRA_PIPELINERUN_DEBUGGING = False

 (checksum_level,
 job_history,
 pipeline,
 runtime_data,
 target_tasks,
 forcedtorun_tasks) = _pipeline_prepare_to_run(checksum_level, history_file,
 pipeline, runtime_data,
 target_tasks, forcedtorun_tasks)

 (topological_sorted, ignore_param1, ignore_param2, ignore_param3) = \
 topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
 gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[
 t_verbose_logger(0, 0, None, runtime_data), job_history],
 signal_callback=is_node_up_to_date)
 if not len(target_tasks):
 target_tasks = topological_sorted[-1:]

 # open file if (unicode?) string
 close_stream = False
 if isinstance(stream, path_str_type):
 stream = open(stream, "wb")
 close_stream = True

 # derive format automatically from name
 if output_format is None:
 output_format = os.path.splitext(stream.name)[1].lstrip(".")

 try:
 graph_printout(stream,
 output_format,
 target_tasks,
 forcedtorun_tasks,
 draw_vertically,
 ignore_upstream_of_target,
 skip_uptodate_tasks,
 gnu_make_maximal_rebuild_mode,
 test_all_task_for_update,
 no_key_legend,
 minimal_key_legend,
 user_colour_scheme,
 pipeline_name,
 size,
 dpi,
 extra_data_for_signal=[t_verbose_logger(
 0, 0, None, runtime_data), job_history],
 signal_callback=is_node_up_to_date)
 finally:
 # if this is a stream we opened, we have to close it ourselves
 if close_stream:
 stream.close()

def get_completed_task_strings(incomplete_tasks, all_tasks, forcedtorun_tasks, verbose,
 verbose_abbreviated_path, indent, runtime_data, job_history):
 """
 Printout list of completed tasks
 """
 completed_task_strings = []
 if len(all_tasks) > len(incomplete_tasks):
 completed_task_strings.append("")
 completed_task_strings.append("_" * 40)
 completed_task_strings.append("Tasks which are up-to-date:")
 completed_task_strings.append("")
 completed_task_strings.append("")
 set_of_incomplete_tasks = set(incomplete_tasks)

 for t in all_tasks:
 # Only print Up to date tasks
 if t in set_of_incomplete_tasks:
 continue
 # LOGGER
 completed_task_strings.extend(t._printout(runtime_data,
 t in forcedtorun_tasks, job_history, False,
 verbose, verbose_abbreviated_path, indent))

 completed_task_strings.append("_" * 40)
 completed_task_strings.append("")
 completed_task_strings.append("")

 return completed_task_strings

[docs]def pipeline_printout(output_stream=None,
 target_tasks=[],
 forcedtorun_tasks=[],
 # verbose defaults to 4 if None
 verbose=None,
 indent=4,
 gnu_make_maximal_rebuild_mode=True,
 wrap_width=100,
 runtime_data=None,
 checksum_level=None,
 history_file=None,
 verbose_abbreviated_path=None,
 pipeline=None):
 # Remember to add further extra parameters here to
 # "extra_pipeline_printout_options" inside cmdline.py
 # This will forward extra parameters from the command
 # line to pipeline_printout
 """
 Printouts the parts of the pipeline which will be run

 Because the parameters of some jobs depend on the results of previous
 tasks, this function produces only the current snap-shot of task jobs.
 In particular, tasks which generate variable number of inputs into
 following tasks will not produce the full range of jobs.

 ::
 verbose = 0 : Nothing
 verbose = 1 : All Tasks names
 verbose = 2 : All Tasks (including any task function docstrings)
 verbose = 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
 verbose = 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
 verbose = 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)
 verbose = 6 : All jobs in All Tasks whether out of date or not

 :param output_stream: where to print to
 :type output_stream: file-like object with ``write()`` function
 :param target_tasks: targets task functions which will be run if they are
 out-of-date
 :param forcedtorun_tasks: task functions which will be run whether or not
 they are out-of-date
 :param verbose: level 0 : nothing
 level 1 : Out-of-date Task names
 level 2 : All Tasks (including any task function docstrings)
 level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
 level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
 level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)
 level 6 : All jobs in All Tasks whether out of date or not
 level 7 : Show file modification times for All jobs in All Tasks
 level 10: logs messages useful only for debugging ruffus pipeline code
 :param indent: How much indentation for pretty format.
 :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
 out-of-date tasks. Runs minimal
 set to build targets if set to
 ``True``. Use with caution.
 :param wrap_width: The maximum length of each line
 :param runtime_data: Experimental feature: pass data to tasks at run time
 :param checksum_level: Several options for checking up-to-dateness are
 available: Default is level 1.
 level 0 : Use only file timestamps
 level 1 : above, plus timestamp of successful job completion
 level 2 : above, plus a checksum of the pipeline function body
 level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators
 :param history_file: Database file storing checksums and file timestamps for input/output files.
 :param verbose_abbreviated_path: whether input and output paths are abbreviated.
 level 0: The full (expanded, abspath) input or output path
 level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with ``[,,,]/``
 level < 0: Input / Output parameters are truncated to ``MMM`` letters where ``verbose_abbreviated_path ==-MMM``. Subdirectories are first removed to see if this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by ``<???>``
 """
 # do nothing!
 if verbose == 0:
 return

 #
 # default values
 #
 if verbose_abbreviated_path is None:
 verbose_abbreviated_path = 2
 if verbose is None:
 verbose = 4

 # EXTRA pipeline_run DEBUGGING
 global EXTRA_PIPELINERUN_DEBUGGING
 EXTRA_PIPELINERUN_DEBUGGING = False

 if output_stream is None:
 output_stream = sys.stdout

 if not hasattr(output_stream, "write"):
 raise Exception("The first parameter to pipeline_printout needs to be "
 "an output file, e.g. sys.stdout and not %s"
 % str(output_stream))

 logging_strm = t_verbose_logger(verbose, verbose_abbreviated_path,
 t_stream_logger(output_stream), runtime_data)

 (checksum_level,
 job_history,
 pipeline,
 runtime_data,
 target_tasks,
 forcedtorun_tasks) = _pipeline_prepare_to_run(checksum_level, history_file,
 pipeline, runtime_data,
 target_tasks, forcedtorun_tasks)

 (incomplete_tasks,
 self_terminated_nodes,
 dag_violating_edges,
 dag_violating_nodes) = \
 topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
 gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[
 t_verbose_logger(0, 0, None, runtime_data), job_history],
 signal_callback=is_node_up_to_date)

 #
 # raise error if DAG violating nodes
 #
 if len(dag_violating_nodes):
 dag_violating_tasks = ", ".join(t._name for t in dag_violating_nodes)

 e = ruffus_exceptions.error_circular_dependencies("Circular dependencies found in the pipeline involving "
 "one or more of (%s)" % (dag_violating_tasks,))
 raise e

 wrap_indent = " " * (indent + 11)

 #
 # Get updated nodes as all_nodes - nodes_to_run
 #
 # LOGGER level 6 : All jobs in All Tasks whether out of date or not
 if verbose in [1, 2] or verbose >= 5:
 (all_tasks, ignore_param1, ignore_param2, ignore_param3) = \
 topologically_sorted_nodes(target_tasks, True, gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[
 t_verbose_logger(
 0, 0, None, runtime_data),
 job_history],
 signal_callback=is_node_up_to_date)
 for m in get_completed_task_strings(incomplete_tasks, all_tasks, forcedtorun_tasks,
 verbose, verbose_abbreviated_path, indent,
 runtime_data, job_history):
 output_stream.write(textwrap.fill(m, subsequent_indent=wrap_indent,
 width=wrap_width) + "\n")

 output_stream.write("\n" + "_" * 40 + "\nTasks which will be run:\n\n")
 for t in incomplete_tasks:
 # LOGGER
 messages = t._printout(runtime_data, t in forcedtorun_tasks,
 job_history, True, verbose,
 verbose_abbreviated_path, indent)
 for m in messages:
 output_stream.write(textwrap.fill(m, subsequent_indent=wrap_indent,
 width=wrap_width) + "\n")

 if verbose:
 # LOGGER
 output_stream.write("_" * 40 + "\n")

def get_semaphore(t, _job_limit_semaphores, syncmanager):
 """
 return semaphore to limit the number of concurrent jobs
 """
 #
 # Is this task limited in the number of jobs?
 #
 if t.semaphore_name not in t._job_limit_semaphores:
 return None

 #
 # create semaphore if not yet created
 #
 if t.semaphore_name not in _job_limit_semaphores:
 maximum_jobs_num = t._job_limit_semaphores[t.semaphore_name]
 _job_limit_semaphores[t.semaphore_name] = syncmanager.BoundedSemaphore(
 maximum_jobs_num)
 return _job_limit_semaphores[t.semaphore_name]

def job_needs_to_run(task, params, force_rerun, logger, verbose, job_name,
 job_history, verbose_abbreviated_path):
 """
 Check if job parameters out of date / needs to rerun
 Also logs why things are up to date or not

 TODO Is this a duplicate of logic in is_up_to_date??
 TODO Is this a duplicate of logic in _printout??
 TODO Ignores is_active
 """

 # Out of date because forced to run
 if force_rerun:
 # LOGGER: Out-of-date Jobs in Out-of-date Tasks
 log_at_level(logger, 3, verbose, " force task %s to rerun "
 % job_name)
 return True

 if task.needs_update_func is None:
 # LOGGER: Out-of-date Jobs in Out-of-date Tasks
 log_at_level(logger, 3, verbose, " %s no function to check "
 "if up-to-date " % job_name)
 return True

 # extra clunky hack to also pass task info--
 # makes sure that there haven't been code or
 # arg changes
 if task.needs_update_func == needs_update_check_modify_time:
 needs_update, msg = task.needs_update_func(
 *params, task=task, job_history=job_history,
 verbose_abbreviated_path=verbose_abbreviated_path,
 return_file_dates_when_uptodate=verbose > 6)
 else:
 needs_update, msg = task.needs_update_func(*params)

 if not needs_update:
 # LOGGER: All Jobs in Out-of-date Tasks
 log_at_level(logger, 5, verbose,
 " %s unnecessary: already %s" % (job_name, msg))
 return False

 # LOGGER: Out-of-date Jobs in Out-of-date
 # Tasks: Why out of date
 if not log_at_level(logger, 4, verbose, " %s %s " % (job_name, msg)):
 # LOGGER: Out-of-date Jobs in
 # Out-of-date Tasks: No explanation
 log_at_level(logger, 3, verbose, " %s" % (job_name))

 #
 # Clunky hack to make sure input files exists right
 # before job is called for better error messages
 #
 if task.needs_update_func == needs_update_check_modify_time:
 check_input_files_exist(*params)

 return True

def remove_completed_tasks(task_with_completed_job_q, incomplete_tasks,
 count_remaining_jobs, logger, verbose):
 """
 Remove completed tasks in same thread as job parameters generation to
 prevent race conditions
 Task completion is usually signalled from pipeline_run
 """
 while True:
 try:
 (job_completed_task,
 job_completed_task_name,
 job_completed_node_index,
 job_completed_name) = task_with_completed_job_q.get_nowait()

 if job_completed_task not in incomplete_tasks:
 raise Exception("Last job %s for %s. Missing from "
 "incomplete tasks in make_job_parameter_generator"
 % (job_completed_name, job_completed_task_name))
 count_remaining_jobs[job_completed_task] -= 1
 #
 # Negative job count : something has gone very wrong
 #
 if count_remaining_jobs[job_completed_task] < 0:
 raise Exception("job %s for %s causes job count < 0."
 % (job_completed_name,
 job_completed_task_name))

 #
 # This Task completed
 #
 if count_remaining_jobs[job_completed_task] == 0:
 log_at_level(logger, 10, verbose, " Last job for %r. "
 "Retired from incomplete tasks in pipeline_run "
 % job_completed_task._get_display_name())
 incomplete_tasks.remove(job_completed_task)
 job_completed_task._completed()
 log_at_level(logger, 1, verbose, "Completed Task = %r "
 % job_completed_task._get_display_name())

 except queue.Empty:
 break

def make_job_parameter_generator(incomplete_tasks, task_parents, logger,
 forcedtorun_tasks, task_with_completed_job_q,
 runtime_data, verbose,
 verbose_abbreviated_path,
 syncmanager,
 death_event,
 touch_files_only, job_history):
 """
 Parameter generator factory for all jobs / tasks
 """

 inprogress_tasks = set()
 _job_limit_semaphores = dict()

 # ___
 #
 # Parameter generator returned by factory
 #
 # ___
 def parameter_generator():
 count_remaining_jobs = defaultdict(int)
 log_at_level(logger, 10, verbose, " job_parameter_generator BEGIN")
 while len(incomplete_tasks):
 cnt_jobs_created_for_all_tasks = 0
 cnt_tasks_processed = 0

 #
 # get rid of all completed tasks first
 # Completion is signalled from pipeline_run
 #
 remove_completed_tasks(task_with_completed_job_q, incomplete_tasks,
 count_remaining_jobs, logger, verbose)

 for t in list(incomplete_tasks):
 #
 # wrap in execption handler so that we know
 # which task the original exception came from
 #
 try:
 log_at_level(logger, 10, verbose, " job_parameter_generator consider "
 "task = %r" % t._get_display_name())

 # ignore tasks in progress
 if t in inprogress_tasks:
 continue
 log_at_level(logger, 10, verbose, " job_parameter_generator task %r not in "
 "progress" % t._get_display_name())

 # ignore tasks with incomplete dependencies
 incomplete_parent = False
 for parent in task_parents[t]:
 if parent in incomplete_tasks:
 incomplete_parent = True
 break
 if incomplete_parent:
 continue

 log_at_level(logger, 10, verbose, " job_parameter_generator start task %r "
 "(parents completed)" % t._get_display_name())
 force_rerun = t in forcedtorun_tasks
 inprogress_tasks.add(t)
 cnt_tasks_processed += 1

 #
 # Log active task
 #
 if t.is_active:
 forced_msg = ": Forced to rerun" if force_rerun else ""
 log_at_level(logger, 1, verbose, "Task enters queue = %r %s"
 % (t._get_display_name(), forced_msg))
 if len(t.func_description):
 log_at_level(logger, 2, verbose,
 " " + t.func_description)
 #
 # Inactive skip loop
 #
 else:
 incomplete_tasks.remove(t)
 # N.B. inactive tasks are not _completed()
 # t._completed()
 t.output_filenames = None
 log_at_level(logger, 2, verbose, "Inactive Task = %r"
 % t._get_display_name())
 continue

 # use output parameters generated by running task
 t.output_filenames = []

 # If no parameters: just call task function (empty list)
 if t.param_generator_func is None:
 task_parameters = ([[], []],)
 else:
 task_parameters = t.param_generator_func(runtime_data)

 #
 # iterate through jobs
 #
 cnt_jobs_created = 0
 for params, unglobbed_params in task_parameters:

 #
 # save output even if uptodate
 #
 if len(params) >= 2:
 # To do: In the case of split subdivide, we should be doing this after
 # The job finishes
 t.output_filenames.append(params[1])

 job_name = t._get_job_name(unglobbed_params,
 verbose_abbreviated_path,
 runtime_data)

 if not job_needs_to_run(t, params, force_rerun, logger, verbose, job_name,
 job_history, verbose_abbreviated_path):
 continue

 # pause for one second before first job of each tasks
 # @originate tasks do not need to pause,
 # because they depend on nothing!
 if cnt_jobs_created == 0 and touch_files_only < 2:
 if "ONE_SECOND_PER_JOB" in runtime_data and \
 runtime_data["ONE_SECOND_PER_JOB"] and \
 t._action_type != Task._action_task_originate:
 log_at_level(logger, 10, verbose,
 " 1 second PAUSE in job_parameter_generator\n\n\n")
 time.sleep(1.01)
 else:
 time.sleep(0.1)

 count_remaining_jobs[t] += 1
 cnt_jobs_created += 1
 cnt_jobs_created_for_all_tasks += 1

 yield (params,
 unglobbed_params,
 t._name,
 t._node_index,
 job_name,
 t.job_wrapper,
 t.user_defined_work_func,
 get_semaphore(
 t, _job_limit_semaphores, syncmanager),
 death_event,
 touch_files_only)

 # if no job came from this task, this task is complete
 # we need to retire it here instead of normal completion
 # at end of job tasks precisely
 # because it created no jobs
 if cnt_jobs_created == 0:
 incomplete_tasks.remove(t)
 t._completed()
 log_at_level(logger, 1, verbose,
 "Uptodate Task = %r" % t._get_display_name())
 # LOGGER: logs All Tasks (including any task function docstrings)
 log_at_level(logger, 10, verbose, " No jobs created for %r. Retired "
 "in parameter_generator " % t._get_display_name())

 #
 # Add extra warning if no regular expressions match:
 # This is a common class of frustrating errors
 #
 # DEBUGGGG!!
 if verbose >= 1 and \
 "ruffus_WARNING" in runtime_data and \
 t.param_generator_func in runtime_data["ruffus_WARNING"]:
 indent_str = " " * 8
 for msg in runtime_data["ruffus_WARNING"][t.param_generator_func]:
 messages = [msg.replace(
 "\n", "\n" + indent_str)]
 if verbose >= 4 and runtime_data and \
 "MATCH_FAILURE" in runtime_data and \
 t.param_generator_func in runtime_data["MATCH_FAILURE"]:
 for job_msg in runtime_data["MATCH_FAILURE"][t.param_generator_func]:
 messages.append(
 indent_str + "Job Warning: Input substitution failed:")
 messages.append(
 indent_str + " " + job_msg.replace("\n", "\n" + indent_str + " "))
 logger.warning(" In Task %r:\n%s%s "
 % (t._get_display_name(), indent_str, "\n".join(messages)))

 #
 # GeneratorExit thrown when generator doesn't complete.
 # I.e. there is a break in the pipeline_run loop.
 # This happens where there are exceptions
 # signalled from within a job
 #
 # This is not really an exception, more a way to exit the
 # generator loop asynchrononously so that cleanups can
 # happen (e.g. the "with" statement or finally.)
 #
 # We could write except Exception: below which will catch
 # everything but KeyboardInterrupt and StopIteration
 # and GeneratorExit in python 2.6
 #
 # However, in python 2.5, GeneratorExit inherits from
 # Exception. So we explicitly catch and rethrow
 # GeneratorExit.
 except GeneratorExit:
 raise
 except:
 exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
 exception_stack = traceback.format_exc()
 exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
 exception_value = str(exceptionValue)
 if len(exception_value):
 exception_value = "(%s)" % exception_value
 errt = ruffus_exceptions.RethrownJobError([(t._name,
 "",
 exception_name,
 exception_value,
 exception_stack)])
 errt.specify_task(t, "Exceptions generating parameters")
 raise errt

 # extra tests in case final tasks do not result in jobs
 if len(incomplete_tasks) and \
 (not cnt_tasks_processed or cnt_jobs_created_for_all_tasks):
 log_at_level(logger, 10, verbose, " incomplete tasks = " +
 ",".join([t._name for t in incomplete_tasks]))
 yield waiting_for_more_tasks_to_complete()

 yield all_tasks_complete()
 # This function is done
 log_at_level(logger, 10, verbose, " job_parameter_generator END")

 return parameter_generator

def feed_job_params_to_process_pool_factory(parameter_q, death_event, logger,
 verbose):
 """
 Process pool gets its parameters from this generator
 Use factory function to save parameter_queue
 """
 def feed_job_params_to_process_pool():
 log_at_level(logger, 10, verbose,
 " Send params to Pooled Process START")
 while 1:
 log_at_level(logger, 10, verbose,
 " Get next parameter size = %d" % parameter_q.qsize())
 if not parameter_q.qsize():
 time.sleep(0.1)
 params = parameter_q.get()
 log_at_level(logger, 10, verbose, " Get next parameter done")

 # all tasks done
 if isinstance(params, all_tasks_complete):
 break

 if death_event.is_set():
 death_event.clear()
 break

 log_at_level(logger, 10, verbose,
 " Send params to Pooled Process=>" + str(params[0]))
 yield params

 log_at_level(logger, 10, verbose,
 " Send params to Pooled Process END")

 # return generator
 return feed_job_params_to_process_pool

def fill_queue_with_job_parameters(job_parameters, parameter_q, POOL_SIZE,
 logger, verbose):
 """
 Ensures queue filled with number of parameters > jobs / slots (POOL_SIZE)
 """
 log_at_level(logger, 10, verbose,
 " fill_queue_with_job_parameters START")

 for params in job_parameters:

 # stop if no more jobs available
 if isinstance(params, waiting_for_more_tasks_to_complete):
 log_at_level(logger, 10, verbose,
 " fill_queue_with_job_parameters WAITING for task to complete")
 break

 if not isinstance(params, all_tasks_complete):
 log_at_level(logger, 10, verbose, " fill_queue_with_job_parameters=>" +
 str(params[0]))

 # put into queue
 parameter_q.put(params)

 # queue size needs to be at least 2 so that the parameter queue never
 # consists of a singlewaiting_for_task_to_complete entry which will
 # cause a loop and everything to hang!
 if parameter_q.qsize() > POOL_SIZE + 1:
 break
 log_at_level(logger, 10, verbose, " fill_queue_with_job_parameters END")

def pipeline_get_task_names(pipeline=None):
 """
 Get all task names in a pipeline
 Not that does not check if pipeline is wired up properly
 """

 # EXTRA pipeline_run DEBUGGING
 global EXTRA_PIPELINERUN_DEBUGGING
 EXTRA_PIPELINERUN_DEBUGGING = False

 #
 # pipeline must be a Pipeline or a string naming a pipeline
 #
 pipeline = lookup_pipeline(pipeline)

 #
 # Make sure all tasks in dependency list are linked to real functions
 #
 processed_tasks = set()
 completed_pipeline_names = pipeline._complete_task_setup(processed_tasks)

 #
 # Return task names for all nodes willy nilly
 #

 return [n._name for n in node._all_nodes]

def get_job_result_output_file_names(job_result):
 """
 Excludes input file names being passed through
 """
 if len(job_result.unglobbed_params) <= 1: # some jobs have no outputs
 return

 unglobbed_input_params = job_result.unglobbed_params[0]
 unglobbed_output_params = job_result.unglobbed_params[1]

 # some have multiple outputs from one job
 if not isinstance(unglobbed_output_params, list):
 unglobbed_output_params = [unglobbed_output_params]

 # canonical path of input files, retaining any symbolic links:
 # symbolic links have their own checksumming
 input_file_names = set()
 for i_f_n in get_strings_in_flattened_sequence([unglobbed_input_params]):
 input_file_names.add(os.path.abspath(i_f_n))

 #
 # N.B. output parameters are not necessary all strings
 # and not all files have been successfully created,
 # even though the task apparently completed properly!
 # Remember to re-expand globs (from unglobbed paramters)
 # after the job has run successfully
 #
 for possible_glob_str in get_strings_in_flattened_sequence(unglobbed_output_params):
 for o_f_n in glob.glob(possible_glob_str):
 #
 # Exclude output files if they are input files "passed through"
 #
 if os.path.abspath(o_f_n) in input_file_names:
 continue

 #
 # use paths relative to working directory
 #
 yield os.path.relpath(o_f_n)

 return

def handle_sigint(pool, pipeline):
 pool.kill(ruffus_exceptions.JobSignalledBreak)

def handle_sigusr1(pool, pipeline):
 pipeline.suspend_jobs()

def handle_sigusr2(pool, pipeline):
 pipeline.resume_jobs()

How the job queue works:
Main loop
#
iterates pool.map using feed_job_params_to_process_pool()
(calls parameter_q.get() until all_tasks_complete)
#
if errors but want to finish tasks already in pipeine:
parameter_q.put(all_tasks_complete())
keep going
else:
#
loops through jobs until no more jobs in non-dependent tasks
separate loop in generator so that list of incomplete_tasks
does not get updated half way through
causing race conditions
#
parameter_q.put(params)
until waiting_for_more_tasks_to_complete
until queue is full (check *after*)
#
[docs]def pipeline_run(target_tasks=[],
 forcedtorun_tasks=[],
 multiprocess=1,
 logger=stderr_logger,
 gnu_make_maximal_rebuild_mode=True,
 # verbose defaults to 1 if None
 verbose=None,
 runtime_data=None,
 one_second_per_job=None,
 touch_files_only=False,
 exceptions_terminate_immediately=False,
 log_exceptions=False,
 checksum_level=None,
 multithread=0,
 history_file=None,
 # defaults to 2 if None
 verbose_abbreviated_path=None,
 pipeline=None,
 pool_manager="multiprocessing"):
 # Remember to add further extra parameters here to
 # "extra_pipeline_run_options" inside cmdline.py
 # This will forward extra parameters from the command line to
 # pipeline_run
 """Run pipelines.

 :param target_tasks: targets task functions which will be run if they are
 out-of-date
 :param forcedtorun_tasks: task functions which will be run whether or not
 they are out-of-date
 :param multiprocess: The number of concurrent jobs running on different
 processes.
 :param multithread: The number of concurrent jobs running as different
 threads. If > 1, ruffus will use multithreading
 instead of multiprocessing (and ignore the
 multiprocess parameter). Using multi threading
 is particularly useful to manage high performance
 clusters which otherwise are prone to
 "processor storms" when large number of cores finish
 jobs at the same time.
 :param logger: Where progress will be logged. Defaults to stderr output.
 :type logger: `logging <http://docs.python.org/library/logging.html>`_
 objects
 :param verbose:

 * level 0 : nothing
 * level 1 : All Task names
 * level 2 : All Tasks names any task function docstrings
 * level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
 * level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
 * level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date
 tasks)
 * level 6 : All jobs in All Tasks whether out of date or not
 * level 7 : Show file modification times for All jobs in All Tasks
 * level 10: logs messages useful only for debugging ruffus pipeline code
 :param touch_files_only: Create or update input/output files only to
 simulate running the pipeline. Do not run jobs.
 If set to CHECKSUM_REGENERATE, will regenerate
 the checksum history file to reflect the existing
 i/o files on disk.
 :param exceptions_terminate_immediately: Exceptions cause immediate
 termination rather than waiting
 for N jobs to finish where
 N = multiprocess
 :param log_exceptions: Print exceptions to logger as soon as they occur.
 :param checksum_level: Several options for checking up-to-dateness are
 available: Default is level 1.

 * level 0 : Use only file timestamps
 * level 1 : above, plus timestamp of successful job completion
 * level 2 : above, plus a checksum of the pipeline function body
 * level 3 : above, plus a checksum of the pipeline
 function default arguments and the
 additional arguments passed in by task
 decorators
 :param one_second_per_job: To work around poor file timepstamp resolution
 for some file systems. Defaults to True if
 checksum_level is 0 forcing Tasks to take a
 minimum of 1 second to complete.
 :param runtime_data: Experimental feature: pass data to tasks at run time
 :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
 out-of-date tasks. Runs minimal
 set to build targets if set to
 ``True``. Use with caution.
 :param history_file: Database file storing checksums and file timestamps
 for input/output files.
 :param verbose_abbreviated_path: whether input and output paths are abbreviated.

 * level 0: The full (expanded, abspath) input or output path
 * level > 1: The number of subdirectories to include.
 Abbreviated paths are prefixed with ``[,,,]/``
 * level < 0: Input / Output parameters are truncated
 to ``MMM`` letters where ``verbose_abbreviated_path
 ==-MMM``. Subdirectories are first removed to see
 if this allows the paths to fit in the specified
 limit. Otherwise abbreviated paths are prefixed by
 ``<???>``
 """
 # DEBUGGG
 #print("pipeline_run start", file = sys.stderr)

 #
 # default values
 #
 if touch_files_only is False:
 touch_files_only = 0
 elif touch_files_only is True:
 touch_files_only = 1
 else:
 touch_files_only = 2
 # we are not running anything so do it as quickly as possible
 one_second_per_job = False
 if verbose is None:
 verbose = 1
 if verbose_abbreviated_path is None:
 verbose_abbreviated_path = 2

 # EXTRA pipeline_run DEBUGGING
 global EXTRA_PIPELINERUN_DEBUGGING
 if verbose >= 10:
 EXTRA_PIPELINERUN_DEBUGGING = True
 else:
 EXTRA_PIPELINERUN_DEBUGGING = False

 if verbose == 0:
 logger = black_hole_logger
 elif verbose >= 11:
 # debugging aid: See t_stderr_logger
 # Each invocation of add_unique_prefix adds a unique prefix to
 # all subsequent output So that individual runs of pipeline run
 # are tagged
 if hasattr(logger, "add_unique_prefix"):
 logger.add_unique_prefix()

 (checksum_level,
 job_history,
 pipeline,
 runtime_data,
 target_tasks,
 forcedtorun_tasks) = _pipeline_prepare_to_run(checksum_level,
 history_file,
 pipeline,
 runtime_data,
 target_tasks,
 forcedtorun_tasks)

 # select pool and queue type. Selection is convoluted
 # or backwards compatibility.
 itr_kwargs = {}
 if multiprocess is None:
 multiprocess = 0
 if multithread is None:
 multithread = 0
 parallelism = max(multiprocess, multithread)

 if parallelism > 1:
 if pool_manager == "multiprocessing":
 syncmanager = multiprocessing.Manager()
 death_event = syncmanager.Event()
 if multithread:
 pool_t = ThreadPool
 queue_t = queue.Queue
 elif multiprocess > 1:
 pool_t = ProcessPool
 queue_t = queue.Queue
 # Use a timeout of 3 years per job..., so that the condition
 # we are waiting for in the thread can be interrupted by
 # signals... In other words, so that Ctrl-C works
 # Yucky part is that timeout is an extra parameter to
 # IMapIterator.next(timeout=None) but next() for normal
 # iterators do not take any extra parameters.
 itr_kwargs = dict(timeout=99999999)
 pool = pool_t(parallelism)
 elif pool_manager == "gevent":
 import gevent.event
 import gevent.queue
 import gevent.pool
 try:
 from gevent.signal import signal as gevent_signal
 except:
 import gevent.signal as gevent_signal
 try:
 import gevent.lock as gevent_lock
 except:
 import gevent.coros as gevent_lock
 syncmanager = gevent_lock
 death_event = gevent.event.Event()
 pool_t = gevent.pool.Pool
 pool = pool_t(parallelism)
 queue_t = gevent.queue.Queue
 gevent_signal(signal.SIGINT, functools.partial(handle_sigint, pool=pool, pipeline=pipeline))
 gevent_signal(signal.SIGUSR1, functools.partial(handle_sigusr1, pool=pool, pipeline=pipeline))
 gevent_signal(signal.SIGUSR2, functools.partial(handle_sigusr2, pool=pool, pipeline=pipeline))
 else:
 raise ValueError("unknown pool manager '{}'".format(pool_manager))

 else:
 syncmanager = multiprocessing.Manager()
 death_event = syncmanager.Event()
 pool = None
 queue_t = queue.Queue

 # Supplement mtime with system clock if using
 # CHECKSUM_HISTORY_TIMESTAMPS we don't need to default to adding 1
 # second delays between jobs
 if one_second_per_job is None:
 if checksum_level == CHECKSUM_FILE_TIMESTAMPS:
 log_at_level(logger, 10, verbose,
 " Checksums rely on FILE TIMESTAMPS only and we don't know if the "
 "system file time resolution: Pause 1 second...")
 runtime_data["ONE_SECOND_PER_JOB"] = True
 else:
 log_at_level(logger, 10, verbose, " Checksum use calculated time as well: "
 "No 1 second pause...")
 runtime_data["ONE_SECOND_PER_JOB"] = False
 else:
 log_at_level(logger, 10, verbose, " One second per job specified to be %s"
 % one_second_per_job)
 runtime_data["ONE_SECOND_PER_JOB"] = one_second_per_job

 if touch_files_only and verbose >= 1:
 logger.info("Touch output files instead of remaking them.")

 # To update the checksum file, we force all tasks to rerun but
 # then don't actually call the task function...
 # So starting with target_tasks and forcedtorun_tasks,
 # we harvest all upstream dependencies willy, nilly
 # and assign the results to forcedtorun_tasks
 if touch_files_only == 2:
 (forcedtorun_tasks, ignore_param1, ignore_param2, ignore_param3) = \
 topologically_sorted_nodes(target_tasks + forcedtorun_tasks, True,
 gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[t_verbose_logger(0, 0, None,
 runtime_data),
 job_history],
 signal_callback=is_node_up_to_date)

 # If verbose >=10, for debugging:
 # Prints which tasks trigger the pipeline rerun...
 # i.e. start from the farthest task, prints out all the up to date
 # tasks, and the first out of date task
 (incomplete_tasks, self_terminated_nodes,
 dag_violating_edges, dag_violating_nodes) = \
 topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
 gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[
 t_verbose_logger(verbose, verbose_abbreviated_path,
 logger, runtime_data),
 job_history],
 signal_callback=is_node_up_to_date)

 if len(dag_violating_nodes):
 dag_violating_tasks = ", ".join(t._name for t in dag_violating_nodes)

 e = ruffus_exceptions.error_circular_dependencies("Circular dependencies found in the "
 "pipeline involving one or more of "
 "(%s)" % (dag_violating_tasks))
 raise e

 # get dependencies. Only include tasks which will be run
 set_of_incomplete_tasks = set(incomplete_tasks)
 task_parents = defaultdict(set)
 for t in set_of_incomplete_tasks:
 task_parents[t] = set()
 for parent in t._get_inward():
 if parent in set_of_incomplete_tasks:
 task_parents[t].add(parent)

 # Print Complete tasks
 # LOGGER level 5 : All jobs in All Tasks whether out of date or not
 if verbose in [1, 2] or verbose >= 5:
 (all_tasks, ignore_param1, ignore_param2, ignore_param3) = topologically_sorted_nodes(
 target_tasks, True,
 gnu_make_maximal_rebuild_mode,
 extra_data_for_signal=[t_verbose_logger(0, 0, None,
 runtime_data),
 job_history],
 signal_callback=is_node_up_to_date)
 # indent hardcoded to 4
 for m in get_completed_task_strings(incomplete_tasks, all_tasks,
 forcedtorun_tasks, verbose,
 verbose_abbreviated_path, 4,
 runtime_data, job_history):
 logger.info(m)

 # print json.dumps(task_parents.items(), indent=4, cls=task_encoder)
 logger.info("")
 logger.info("_" * 40)
 logger.info("Tasks which will be run:")
 logger.info("")
 logger.info("")

 # prepare tasks for pipeline run:
 #
 # clear task outputs
 # task.output_filenames = None
 #
 # **********
 # BEWARE
 # **********
 #
 # Because state is stored, ruffus is *not* reentrant.
 #
 # **********
 # BEWARE
 # **********
 for t in incomplete_tasks:
 t._init_for_pipeline()

 #
 # prime queue with initial set of job parameters
 #
 parameter_q = queue_t()
 task_with_completed_job_q = queue_t()

 parameter_generator = make_job_parameter_generator(incomplete_tasks,
 task_parents,
 logger, forcedtorun_tasks,
 task_with_completed_job_q,
 runtime_data, verbose,
 verbose_abbreviated_path,
 syncmanager, death_event,
 touch_files_only, job_history)
 job_parameters = parameter_generator()
 fill_queue_with_job_parameters(
 job_parameters, parameter_q, parallelism, logger, verbose)

 #
 # N.B.
 # Handling keyboard shortcuts may require
 # See http://stackoverflow.com/questions/1408356/
 # keyboard-interrupts-with-pythons-multiprocessing-pool
 #
 # When waiting for a condition in threading.Condition.wait(),
 # KeyboardInterrupt is never sent
 # unless a timeout is specified
 #
 #
 #
 # #
 # whether using multiprocessing
 # #
 # pool = Pool(parallelism) if multiprocess > 1 else None
 # if pool:
 # pool_func = pool.imap_unordered
 # job_iterator_timeout = []
 # else:
 # pool_func = imap
 # job_iterator_timeout = [999999999999]
 #
 #
 #
 #
 #
 # it = pool_func(run_pooled_job_without_exceptions,
 # feed_job_params_to_process_pool())
 # while 1:
 # try:
 # job_result = it.next(*job_iterator_timeout)
 #
 # ...
 #
 # except StopIteration:
 # break

 if pool is not None:
 pool_func = pool.imap_unordered
 else:
 pool_func = map

 feed_job_params_to_process_pool = feed_job_params_to_process_pool_factory(
 parameter_q, death_event, logger, verbose)

 #
 # for each result from job
 #
 job_errors = ruffus_exceptions.RethrownJobError()
 tasks_with_errors = set()

 #
 # job_result.job_name / job_result.return_value
 # Reserved for returning result from job...
 # How?
 #
 # Rewrite for loop so we can call iter.next() with a timeout
 try:

 # for job_result in pool_func(run_pooled_job_without_exceptions,
 # feed_job_params_to_process_pool()):
 ii = iter(pool_func(run_pooled_job_without_exceptions,
 feed_job_params_to_process_pool()))
 while 1:
 if pool is not None:
 job_result = ii.next(**itr_kwargs)
 else:
 job_result = next(ii)
 # run next task
 log_at_level(logger, 11, verbose, "r" * 80 + "\n")
 t = node._lookup_node_from_index(job_result.node_index)

 # remove failed jobs from history-- their output is bogus now!
 if job_result.state in (JOB_ERROR, JOB_SIGNALLED_BREAK):
 log_at_level(
 logger, 10, verbose, " JOB ERROR / JOB_SIGNALLED_BREAK: " + job_result.job_name)
 # remove outfile from history if it exists
 for o_f_n in get_job_result_output_file_names(job_result):
 job_history.pop(o_f_n, None)

 # only save poolsize number of errors
 if job_result.state == JOB_ERROR:
 log_at_level(logger, 10, verbose, " Exception caught for %s"
 % job_result.job_name)
 job_errors.append(job_result.exception)
 tasks_with_errors.add(t)

 #
 # print to logger immediately
 #
 if log_exceptions:
 log_at_level(logger, 10, verbose, " Log Exception")
 logger.error(job_errors.get_nth_exception_str())

 #
 # break if too many errors
 #
 if len(job_errors) >= parallelism or exceptions_terminate_immediately:
 log_at_level(logger, 10, verbose, " Break loop %s %s %s "
 % (exceptions_terminate_immediately,
 len(job_errors), parallelism))
 parameter_q.put(all_tasks_complete())
 break

 # break immediately if the user says stop
 elif job_result.state == JOB_SIGNALLED_BREAK:
 job_errors.append(job_result.exception)
 job_errors.specify_task(t, "Exceptions running jobs")
 log_at_level(logger, 10, verbose, " Break loop JOB_SIGNALLED_BREAK %s %s "
 % (len(job_errors), parallelism))
 parameter_q.put(all_tasks_complete())
 break

 else:
 if job_result.state == JOB_UP_TO_DATE:
 # LOGGER: All Jobs in Out-of-date Tasks
 log_at_level(logger, 5, verbose, " %s unnecessary: already up to date"
 % job_result.job_name)
 else:
 # LOGGER: Out-of-date Jobs in Out-of-date Tasks
 log_at_level(logger, 3, verbose,
 " %s completed" % job_result.job_name)
 # save this task name and the job (input and output files)
 # alternatively, we could just save the output file and its
 # completion time, or on the other end of the spectrum,
 # we could save a checksum of the function that generated
 # this file, something akin to:
 # chksum = md5.md5(marshal.dumps(t.user_defined_work_func.func_code.co_code))
 # we could even checksum the arguments to the function that
 # generated this file:
 # chksum2 = md5.md5(marshal.dumps(t.user_defined_work_func.func_defaults) +
 # marshal.dumps(t.args))

 for o_f_n in get_job_result_output_file_names(job_result):
 try:
 log_at_level(logger, 10, verbose,
 " Job History : " + o_f_n)
 mtime = os.path.getmtime(o_f_n)
 #
 # use probably higher resolution
 # time.time() over mtime which might have 1 or 2s
 # resolutions, unless there is clock skew and the
 # filesystem time > system time (e.g. for networks)
 #
 epoch_seconds = time.time()
 # Aargh. go back to insert one second between jobs
 if epoch_seconds < mtime:
 if one_second_per_job is None and \
 not runtime_data["ONE_SECOND_PER_JOB"]:
 log_at_level(logger, 10, verbose,
 " Switch to 1s per job")
 runtime_data["ONE_SECOND_PER_JOB"] = True
 elif epoch_seconds - mtime < 1.1:
 mtime = epoch_seconds
 chksum = JobHistoryChecksum(o_f_n, mtime,
 job_result.unglobbed_params[2:], t)
 job_history[o_f_n] = chksum
 log_at_level(logger, 10, verbose,
 " Job History Saved: " + o_f_n)
 except:
 pass

 log_at_level(logger, 10, verbose,
 " _is_up_to_date completed task & checksum...")
 #
 # _is_up_to_date completed task after checksumming
 #
 task_with_completed_job_q.put((t,
 job_result.task_name,
 job_result.node_index,
 job_result.job_name))

 # make sure queue is still full after each job is retired
 # do this after undating which jobs are incomplete
 log_at_level(logger, 10, verbose, " job errors?")
 if len(job_errors):
 # parameter_q.clear()
 # if len(job_errors) == 1 and not parameter_q._closed:
 log_at_level(logger, 10, verbose, " all tasks completed...")
 parameter_q.put(all_tasks_complete())
 else:
 log_at_level(logger, 10, verbose,
 " Fill queue with more parameter...")
 fill_queue_with_job_parameters(job_parameters, parameter_q, parallelism, logger,
 verbose)
 # The equivalent of the normal end of a fall loop
 except StopIteration as e:
 pass
 except:
 exception_name, exception_value, exception_Traceback = sys.exc_info()
 exception_stack = traceback.format_exc()
 # save exception to rethrow later
 job_errors.append((None, None, exception_name,
 exception_value, exception_stack))
 for ee in exception_value, exception_name, exception_stack:
 log_at_level(logger, 10, verbose,
 " Exception caught %s" % (ee,))
 log_at_level(logger, 10, verbose,
 " Get next parameter size = %d" % parameter_q.qsize())
 log_at_level(logger, 10, verbose, " Task with completed "
 "jobs size = %d" % task_with_completed_job_q.qsize())
 parameter_q.put(all_tasks_complete())
 try:
 death_event.clear()
 except:
 pass

 if pool is not None:
 if hasattr(pool, "close"):
 log_at_level(logger, 10, verbose, " pool.close")
 pool.close()
 log_at_level(logger, 10, verbose, " pool.terminate")
 try:
 pool.terminate()
 except:
 pass
 log_at_level(logger, 10, verbose, " pool.terminated")
 raise job_errors

 # log_at_level (logger, 10, verbose, " syncmanager.shutdown")
 # syncmanager.shutdown()

 if pool is not None:
 log_at_level(logger, 10, verbose, " pool.close")
 # pool.join()
 try:
 pool.close()
 except AttributeError:
 pass
 log_at_level(logger, 10, verbose, " pool.terminate")
 try:
 pool.terminate()
 except AttributeError:
 pass
 except Exception:
 # an exception may be thrown after a signal is caught (Ctrl-C)
 # when the EventProxy(s) for death_event might be left hanging
 pass
 log_at_level(logger, 10, verbose, " pool.terminated")

 # Switch back off EXTRA pipeline_run DEBUGGING
 EXTRA_PIPELINERUN_DEBUGGING = False

 if len(job_errors):
 raise job_errors

if __name__ == '__main__':
 import unittest

 #
 # debug parameter ignored if called as a module
 #
 if sys.argv.count("--debug"):
 sys.argv.remove("--debug")
 unittest.main()

_images/bestiary_combinatorics.png
@combinations dpermutations @product
COm Ol u Om
O O
O O Om OO
[| Om | ——
| O] nE
am] O
Bl _|m
starting starting starting

data data data

_images/bestiary_decorators.png
1 to many many to even more l1tol many to tewer many to 1
@originate @split @subdivide (@transform @collate @merge

E— 5 >—

starting intermediate intermediate intermediate intermediate

data data 1 data 2 data 3 data 4 Results

_images/bestiary_transform.png
@transform (@transform (@transform
E——8 — 95— —— 9> — 1
E——>—8 — >—u1 — >— 1
B —— > >—8 — >5>—1 —— >— =

starting intermediate intermediate Results
data data 1 data 2

nav.xhtml

 Table of Contents

 		
 Ruffus documentation

 		
 Installation

 		
 Latest Changes

 		
 Manual

 		
 New Object Orientated Syntax

 		
 FAQ

 		
 Hall of Fame

 		
 Who is Ruffus?

 		
 Release notes

 		
 Ruffus Functions

 		
 pipeline_run

 		
 pipeline_printout

 		
 pipeline_printout_graph

 		
 pipeline_get_task_names

 		
 run_job

 		
 Ruffus Decorators

 		
 Core

 		
 Combinatorics

 		
 Advanced

 		
 Esoteric!

 		
 Indicator Objects

 		
 formatter

 		
 suffix

 		
 regex

 		
 add_inputs

 		
 inputs

 		
 mkdir

 		
 touch_file

 		
 output_from

 		
 combine

 		
 Contributing

 		
 Reporting bug fixes

 		
 Proposing a new feature/enhancement

 		
 Pull Request Guidelines

_images/examples_bioinformatics_pipeline.jpg
Beforehand Incomplete Up-to-date

Pipeline: Pipeline: Pipeline:

s =
1

combineBlastResults

combineBlastResults

_images/examples_bioinformatics_split.jpg
@sp1it I-to-many operation: Each “original.fa”is
+ split into many “* . segment”

@split|("original.fa", "*.segment")
def splitFasta (segFile, segments:

current file index = 0
for line in open(original_fasta):

#

start a new file for each accession line
#

if line[0] G

s |
$d.segment” % current file index, "w")

current_file index +
current_file = open(
current_file.write (line)

_images/examples_bioinformatics_error.png
Traceback (most recent call last):
File "./run_parallel blast.py”, line 256, in <module>
logger = logger, verbose=options.verbose)
File "build/bdist.linux-1686/egg/ruffus/task.py”, line 2655, in pipeline_run

ruffus.ruffus_exceptions.RethrownJobError:

Exceptions running jobs for

'def runBlast(..

Original exceptions:
Exception #1
exceptions.Exception (Failed to run 'blastal -p blastp -d human.protein.faz
-i tmp/1.segment > tmp/1.blastResult'
/bin/sh: blastal: not found
for _main .runBlast.Jcb = [tmp/l.segment -> [tmp/l.blastResult,tmp/1.blastSuccess]]

Traceback (most recent call last):
o

File *./run parallel blast.py”, line 204, in rumslast
run_cmd("blastal -p blastp -d human.protein.faa -i %s > %s" % (segFile,

blastResultFile))
[

Exception #2
exceptions.Exception (Failed to run 'blastal -p blastp -d human.protein.faz
-i tmp/1.segment > tmp/1.blastResult'
/bin/sh: blastal: not found
for _main .runBlast.Job = [tmp/2.segment -> [tmp/2.blastResult, tmp/2.blastSuccess]]

Traceback (most recent call last):
o

File *./run parallel blast.py”, line 204, in rumslast
run_cmd("blastal -p blastp -d human.protein.faa -i %s > %s" % (segFile,
blastResultFile))

Exception #3
exceptions.Exception (Failed to run 'blastal -p blastp -d human.protein.faz
-i tmp/1.segment > tmp/1.blastResult'
/bin/sh: blastal: not found
for _main .runBlast.Job = [tmp/3.segment -> [tmp/3.blastResult, tmp/3.blastSuccess]]

Traceback (most recent call last):
o
File *./run parallel blast.py”, line 204, in rumslast
run_cmd("blastal -p blastp -d human.protein.faa -i %s > %s" % (segFile,
blastResultFile))
ol

_images/examples_bioinformatics_merge.jpg
dmerge many-to-1 operation:
All files from runBlast are combined to give “final.blast_results”
@mergerunBlast, "final.blast _results")

£ combineBlastResults (blastResultFiles, combinedBlastResultFile):

output_file = open(combinedBlastResultFile, "w")
for i in blastResultFiles:

output_file.write (open(i).read())

_images/front_page_flowchart.png
Pipeline Flowchart:

Key:

Task to run

!

Up-to-date task
forced to rerun

_images/gallery_big_pipeline.png
Pipeline:

Up-to-date task.
forced to rerun|

/ [makeAnnotatorROIGOSI] | makeAnnotatorRegionsOfinterdt [makeAnnotatorROIGY | makeAnnotatorROIOverlapG

] make Annotator RegionsOfinterestWithM djif| make Annotator Trackswith Mot

77
buid_motif] @ importammotatorArchitectureWithoutMotif ‘ importamnotatorArdhitectureithMotif w‘ —)
= a \ -
ponEspresionGomie] | (mponEspresionc mporGLANZSCA oo proporid) (oo o] Saidmera] repoductiy]
expressio find_mont correltion

_images/examples_bioinformatics_transform.jpg
dtranstorm /-to-1 operation:
Each file from sp11 tFasta with a suffix of “. sSegment” is transformed to a file with the
suffix “.blastResult”

@transform((splitFasta, suffix(".segment"), ".blastResult")
def runBlast(segFile, blastResultFile):

os.system("blastall -p blastp -d human.protein.faa "+

"-i > &s" % (segFile, blastResultFile))

_images/flowchart_colour_schemes.png
Colour Scheme 0 Colour Scheme 1 Colour Scheme 2 Colour Scheme 3 Colour Scheme 4 Colour Scheme 5 Colour Scheme 6 Colour Scheme 7

Explicilly specified task | | Explicilly specified task | | Explicitly specified task | | Explicilly specified task || | Explicitly specified task | | Explicily specified task || | Explicily specified task | | Explicilly specified task

1 1 ¥ 1
Task torun
1

Tasktonn Tasktorm [mactomn
| Up-to-date task | | Up-to-date task Up-to-date task
| forced torenun | | farced torerun | forced to erun

Task torun

Up-to-datetask | | Up-to-date task |
forced to rerun ! forced torerun

| Upto-date task |
! forced torenun |

Up-to-date task

i forced to rerun

Up-to-date Up-to-date
Final target Final target

_images/gallery_dless.png
dless2

copy_repeats_into_working_director

AN

generate_neutral_model convert_maf2fasta ||

N

generate_indel_history|

Key:

Explicitly specified task

¥

Task to run

_images/gallery_rna_seq.png

_images/gallery_snp_annotation.png
SNP Annotation Pipeline:

Key:

Task to run

consequences|

effects

alleles*

_images/history_html_flowchart1.png
Pipeline:

i)

i

. . !

mi What is this? !
mit What isthis???
i

III:

Task_to_runl

1

Task_to_run2

Key:

Task to run

‘Sisisiainiainind i
 Up-to-date task "
1 forced to rerun ::
|

_images/history_html_flowchart2.png
Pipeline:

i)

i

. . !

mi What is this? !
mit What isthis???
i

III:

Task_to_runl

1

Task_to_run2

Key:

Task to run

‘Sisisiainiainind i
 Up-to-date task "
1 forced to rerun ::
|

_images/gallery_snp_annotation_consequences.png
SNP Annotation Pipeline (consequences):

buildGeneRegions|

buildTranscripts|

L2 ‘/ N
Lhuildl’alyphenlnpu(J ‘huildPep(ideFasrzU ‘laszeneSrzlsﬂ [[1oadTranscripts, laszenelnfarmz(ianL huildAllelesH
. \ N - 7]

buildGenes|

| [builapolyphenFeatures] "\ [preparePantier

‘ \

| unPolyphen runPanther summarizeAllelesPerTranscript

] \) | B
[10aaPolyphennap]] [10aaPolyphen]| [10adPanter

full

_images/history_html_flowchart.png
Pipeline:

i)

i

. . !

mi What is this? !
mit What isthis???
i

III:

Task_to_runl

1

Task_to_run2

Key:

Task to run

‘Sisisiainiainind i
 Up-to-date task "
1 forced to rerun ::
|

_images/manual_dependencies_flowchart_intro.png
Pipeline:

Task to run

!

Up-to-date task
! forced to rerun

_images/manual_split_merge_example.jpg
Pipeline:

create_rando m_numbersﬂ

split_problem

sum_of_squares

Key:

Task to run

_images/jobs_limit.png
>>> pipeline_run([stage2], multiprocess = 5)
Job = [None -> *.stagel] completed
Completed Task = make_files

Job = [0.stagel ->
Job = [1.stagel ->
Job = [2.stagel ->
Job = [3.stagel ->
Job = [4.stagel ->
Job = [5.stagel ->
Job = [6.stagel ->
Job = [7.stagel ->
Job = [8.stagel ->
Job = [9.stagel >

Completed Task = stagel
Job = [0.stage2 —>
Job = [1.stage2 —>
Job = [3.stage2 ->
Job = [4.stage2 —>
Job = [2.stage2 ->
Job = [5.stage2 ->
Job = [6.stage2 >
Job = [7.stage2 ->
Job = [8.stage2 ->
Job = [9.stage2 —>

Completed Task = stage2

0.stage2]
1.stage2]
2.stage2]
3.stage2]
4.stage2]
5.stage2]
6.stage2]
7.stage2]
8.stage2]
9.stage2]

0.stage3]
1.stage3]
3.stage3]
4.stage3]
2.stage3]
5.stage3]
6.stage3]
7.stage3]
8.stage3]
9.stage3]

completed
completed
completed
completed
completed
completed
completed
completed
completed
completed

completed
completed
completed
completed
completed
completed
completed
completed
completed
completed

_images/logo.jpg

_images/simple_tutorial_complex_flowchart.png
Complicated pipeline:

Key:

Explicitly specified task

T

Task to run

Up-to-date tas
forced to rerun

_images/simple_tutorial_complex_flowchart_error.png
Complicated pipeline:

Key:

.

task7|| [task3
! 1 Explicitly specified task
tasks|| [task4|
1 1 T
task9|| [tasks Task to run
v
task6
task13 task18
))
task14 task19
¥
task20
task21
¥
task22)

B

_images/pretty_flowchart.png
Pipeline:

Explicitly_specified_task|[-{ Task_to_run[-»! Up to_date_task_forced_to_reru

_images/simple_tutorial_stage5_flowchart.png
Pipeline: Key:

create_initial_file_pairs Up-to-date task |

et o]

_images/simple_tutorial_zoo_animals_formatter_example.jpg
crocodile/reptiles.wild.animals
dog/mammals. tame.animals
dog/mammals.wild.animals
lion/mammals. handreared.animals
lion/mammals.wild.animals
lion/mammals.wild.animals

Roses are not animals!
rose/flowering.handreared.plants

¥ W

reptiles/wild.crocodile. food
mammals/tame.dog. food
mammals/wild.dog. food
mammals/handreared.lion. food
mammals/wild.lion. food
mammals/wild.lion.food

_images/simple_tutorial_stage5_after.png
Pipeline:
create_initial_file_pairs
st e

_images/simple_tutorial_stage5_before.png
Pipeline:
create_initial_file_pairs
first_task

_images/transform_1_to_1_example.png
@transform @transform
first task() second_task ()

*.input *.outputl *.output?

Starting Intermediate Final
data data 1 Results

_images/subpipeline_example.png
mkdir(tempdir/testdir’,

'tempdir/testdir2') #2
before task originate

Pipeline:

mkdir(tempdir/)

before task originate

'tempdir/testdir2') #2

before task originate

mkdir(tempdir/testdir’,

mkdir(tempdir/)

before task originate

mkdir(tempdir/testdir’,

'tempdir/testdir2') #2
before task originate

Key:

mkdir(tempdir/)

before task originate

Task to run

~ .

task_originate

b

task_originate

task_originate

add_iput| add_input| add_iput]
N v I
22 to_ 33| 22 to_33| 22 to_ 33|
A I 4
33_to_44 33_to_44 33_to_44
44_to_55|

_images/theoretical_pipeline_schematic.png
Starting
Data

task_1()

Data 1

Intermediate

—_—
task_2()

Intermediate
Data 2

task_3()

Final

Result

_images/tutorial_step1_decorator_syntax.png
—— Decorator
First_task)

def second_task () : «— Normal Python
nn Function

_images/wikimedia_bandedkrait.jpg

_images/tutorial_key.png
K
------------------------------ -

ey:
I‘;, - Explicitly specified task H Task to run n—»i L#g;é:adf;i;?us: "

_images/tutorial_ruffus_files.jpg
Q. ,{a&f @ —a.2M >a.bam > a. saishu
b. »fasto. b. saw 5 . aw > . statistics
0. fodn 5 €. som e ban > ¢ ks

_images/wikimedia_cyl_ruffus.jpg

_s